精英家教网 > 初中数学 > 题目详情
14.计算:$\sqrt{3}$tan30°-(π-2011)0+$\sqrt{8}$-|1-$\sqrt{2}$|=1+$\sqrt{2}$.

分析 原式利用特殊角的三角函数值,零指数幂法则,绝对值的代数意义,以及二次根式性质计算即可得到结果.

解答 解:原式=$\sqrt{3}$×$\frac{\sqrt{3}}{3}$-1+2$\sqrt{2}$-$\sqrt{2}$+1=1+$\sqrt{2}$.
故答案为:1+$\sqrt{2}$

点评 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.思考题
观察下列等式
$\frac{1}{1×2}$=1-$\frac{1}{2}$,$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$,$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$,
将以上三个等式两边分别相加得:
$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$=1-$\frac{1}{4}$=$\frac{3}{4}$.
(1)猜想并写出:$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$.
(2)直接写出下列各式的计算结果:
①$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2006×2007}$=$\frac{2006}{2007}$;
②$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{n(n+1)}$=$\frac{n}{n+1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知一次函数y=kx+b的图象与x轴交于点A(-6,0),与y轴交于点B,若△AOB的面积为12,且y随x增大而减小,求一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.观察下列等式:$\frac{1}{1×2}$=1-$\frac{1}{2}$,$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$,$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$,
将以上三个等式两边分别相加得:$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$=1-$\frac{1}{4}$=$\frac{3}{4}$.
(1)猜想并写出:$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$;
(1)计算:$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2014×2015}$;
(2)参照上述解法计算:$\frac{1}{2×4}$+$\frac{1}{4×6}$+$\frac{1}{6×8}$+…+$\frac{1}{2012×2014}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.某加工企业生产并销售某种农产品,假设销售量与加工产量相等.已知每千克生产成本y1(单位:元)与产量x(单位:kg)之间满足关系式y1=$\left\{\begin{array}{l}{-0.5x+100(0≤x<80)}\\{3x-180(80≤x≤150)}\end{array}\right.$.如图中线段AB表示每千克销售价格y2(单位:元)与产量x(单位:kg)之间的函数关系式.
(1)试确定每千克销售价格y2(单位:元)与产量x(单位:kg)之间的函数关系式,并写出自变量的取值范围;
(2)若用w(单位:元)表示销售该农产品的利润,试确定w(单位:元)与产量x(单位:kg)之间的函数关系式;
(3)求销售量为70kg时,销售该农产品是盈利,还是亏本?盈利或亏本了多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.四个电子宠物排座位,一开始,小鼠,小猴,小兔,小猫分别坐在1,2,3,4号座位上(如图所示),以后它们不停地交换位置,第一次上下两排交换位置,第二次是在第一次交换位置后再左右两列交换位置,第三次再上下两排交换,第四次再左右两列交换位置,…,这样一直下去,第2008次交换位置后,小鼠所在的座号是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.分解因式:x4+3x2+2ax+4-a2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.(1)图中平行四边形框内的九个数之和与中间的数有什么关系?
(2)在图中任意作一类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由.这九个数之和能等于2016吗?2015,2025呢?若能,请写出这九个数中最小的一个;若不能,请说出理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.在同一坐标系中,画出下列每组函数图象的示意图,并指出前一个函数的图象经过怎样的变换就可以和后一个函数的图象重合:
(1)y=3x2和y=-3x2
(2)y=-$\frac{1}{2}$x2+3和y=-$\frac{1}{2}$x2-2;
(3)y=-2(x-3)2和y=-2(x-5)2

查看答案和解析>>

同步练习册答案