【题目】如图,已知点A是反比例函数 y = (x>0 )的图象上的一个动点,连接OA ,OB⊥OA,且OB =2OA.那么经过点B的反比例函数的表达式为( )
A.y=-B.y= C.y=-D.y=
【答案】C
【解析】
过A作AC⊥y轴,BD⊥y轴,可得∠ACO=∠BDO=90°,利用三角关系得到三角形相似,由相似得比例求出相似比,确定出面积比,求出三角形AOC面积,进而确定出三角形OBD面积,利用反比例函数k的几何意义确定出所求k的值,即可确定出解析式.
过A作AC⊥y轴,BD⊥y轴,可得∠ACO=∠BDO=90°,
∵∠AOC+∠OAC=90°,∠AOC+∠BOD=90°,
∴∠OAC=∠BOD,
∴△AOC∽△OBD,
∵OB=2OA,
∴△AOC与△OBD相似比为1:2,
∴: =1:4,
∵点A在反比例的图象上,
∴△AOC面积为,
∴△OBD面积为2,
经过点B的反比例函数的表达式为,
∴,即,
∵,
∴,
则经过点B的反比例解析式为.
故选:C.
科目:初中数学 来源: 题型:
【题目】甲乙两位同学利用灯光下的影子来测量一路灯A的高度,如图,当甲走到点C处时,乙测得甲直立身高CD与其影子长CE正好相等,接着甲沿BC方向继续向前走,走到点E处时,甲直立身高EF的影子恰好是线段EG,并测得EG=2.5m.已知甲直立时的身高为1.75m,求路灯的高AB的长.(结果精确到0.1m)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1米,拱桥的跨度为10米,桥洞与水面的最大距离是5米,桥洞两侧壁上各有一盏距离水面4米的景观灯,两盏景观灯之间的水平距离为________米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点为平面直角坐标系中不重合的两点,以点为圆心且经过点作,则称点为的“关联点”, 为点的“关联圆”.
(1)已知的半径为1,在点中,的“关联点”为____________(填写字母);
(2)若点,点,为点的“关联圆”,且的半径为,求的值;
(3)已知点,点,是点的“关联圆”,直线与轴,轴分别交于点。若线段上存在的“关联点”,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 随机抛掷一枚均匀的硬币,落地后反面一定朝上。
B. 从1,2,3,4,5中随机取一个数,取得奇数的可能性较大。
C. 某彩票中奖率为,说明买100张彩票,有36张中奖。
D. 打开电视,中央一套正在播放新闻联播。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:抛物线交x轴于A,C两点,交y轴于点B,且OB=2CO.
(1)求二次函数解析式;
(2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;
(3) 抛物线对称轴上是否存在点P,使得△ABP为直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.
(1)求y与x之间的函数关系式;
(2)直接写出当x>0时,不等式x+b>的解集;
(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com