精英家教网 > 初中数学 > 题目详情
(2013•新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为(  )
分析:由Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,可求得AB的长,由D为BC的中点,可求得BD的长,然后分别从若∠DBE=90°与若∠EDB=90°时,去分析求解即可求得答案.
解答:解:∵Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,
∴AB=2BC=4(cm),
∵BC=2cm,D为BC的中点,动点E以1cm/s的速度从A点出发,
∴BD=
1
2
BC=1(cm),BE=AB-AE=4-t(cm),
若∠BED=90°,
当A→B时,∵∠ABC=60°,
∴∠BDE=30°,
∴BE=
1
2
BD=
1
2
(cm),
∴t=3.5,
当B→A时,t=4+0.5=4.5.
若∠BED=90°时,
当A→B时,∵∠ABC=60°,
∴∠BDE=30°,
∴BE=2BD=2(cm),
∴t=4-2=2,
当B→A时,t=4+2=6(舍去).
综上可得:t的值为2或3.5或4.5.
故选D.
点评:此题考查了含30°角的直角三角形的性质.此题属于动点问题,难度适中,注意掌握分类讨论思想与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•新疆)如图,AB∥CD,BC∥DE,若∠B=50°,则∠D的度数是
130°
130°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•新疆)如图,已知一次函数y1=kx+b与反比例函数y2=
mx
的图象交于A(2,4)、B(-4,n)两点.
(1)分别求出y1和y2的解析式;
(2)写出y1=y2时,x的值;
(3)写出y1>y2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•新疆)如图,?ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F.
(1)求证:△AOE≌△COF;
(2)请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•新疆)如图所示,一条自西向东的观光大道l上有A、B两个景点,A、B相距2km,在A处测得另一景点C位于点A的北偏东60°方向,在B处测得景点C位于景点B的北偏东45°方向,求景点C到观光大道l的距离.(结果精确到0.1km)

查看答案和解析>>

同步练习册答案