精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,弦DCABE,过C作⊙O的切线交DB的延长线于M,若AB=4,ADC=45°,M=75°,则CD的长为(  )

A. B. 2 C. D.

【答案】D

【解析】

连接OC,过OOFCD构造垂径定理利用已知的45°角,可以得到∠OCF度数,再利用垂径定理所构造的直角三角形,可得到CD.

解:连接OC,过OOFCD,利用垂径定理得到FCD的中点,

CM为圆O的切线,

∴∠OCM=90°,

∵∠ADCAOC都对弧AC

∴∠AOC=2∠ADC=90°,

∴∠CDM=BOC=45°,

∵∠M=75°,

∴∠DCM=60°,

∴∠OCF=30°,

Rt△OCF中,OC=2,

CF=OCcos∠OCF=

CD=2CF=2

故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线的一部分,如图

(1)求演员弹跳离地面的最大高度;

(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,对角线AC,BD交于点E,BAC=90°,CED=45°,DCE=30°,DE=,BE=.求CD的长和四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠MON=90°,已知ABC中,AC=BC=13AB=10ABC的顶点AB分别在射线OMON上,当点BON上运动时,A随之在OM上运动,ABC的形状始终保持不变,在运动的过程中,点C到点O的最小距离为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠ACB=90°AB=10cmBC=6cm,若点P从点A出发,以每秒4cm的速度沿折线ACBA运动,设运动时间为t秒(t0).

1)若点PAC上,且满足BCP的周长为14cm,求此时t的值;

2)若点P在∠BAC的平分线上,求此时t的值;

3)在运动过程中,直接写出当t为何值时,BCP为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,以B为圆心,BC长为半径画弧,分别交ACABDE,连接BDDE,若∠A=30°AB=AC,则∠BDE的度数为( ).

A.52.5°B.60°C.67.5°D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EFEBC上,FAC上)折叠,点C与点O恰好重合,则∠CEF的度数为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD,DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,E﹣F=33°,则∠E=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,二次函数yax22ax3aa0)的图象与x轴交于AB两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D

1)求顶点D的坐标(用含a的代数式表示);

2)若以AD为直径的圆经过点C

①求抛物线的函数关系式;

②如图2,点Ey轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点PMN分别和点OBE对应),并且点MN都在抛物线上,作MFx轴于点F,若线段MFBF12,求点MN的坐标;

③点Q在抛物线的对称轴上,以Q为圆心的圆过AB两点,并且和直线CD相切,如图3,求点Q的坐标.

查看答案和解析>>

同步练习册答案