精英家教网 > 初中数学 > 题目详情
(2007•芜湖)如图,在△ABC中,AD是BC上的高,tanB=cos∠DAC.
(1)求证:AC=BD;
(2)若sin∠C=,BC=12,求AD的长.

【答案】分析:(1)由于tanB=cos∠DAC,所以根据正切和余弦的概念证明AC=BD;
(2)设AD=12k,AC=13k,然后利用题目已知条件即可解直角三角形.
解答:(1)证明:∵AD是BC上的高,
∴AD⊥BC,
∴∠ADB=90°,∠ADC=90°,
在Rt△ABD和Rt△ADC中,
∵tanB=,cos∠DAC=
又∵tanB=cos∠DAC,
=
∴AC=BD.

(2)解:在Rt△ADC中,
故可设AD=12k,AC=13k,
∴CD==5k,
∵BC=BD+CD,又AC=BD,
∴BC=13k+5k=18k
由已知BC=12,
∴18k=12,
∴k=
∴AD=12k=12×=8.
点评:此题考查解直角三角形、直角三角形的性质等知识,也考查逻辑推理能力和运算能力.
练习册系列答案
相关习题

科目:初中数学 来源:2007年全国中考数学试题汇编《图形的相似》(06)(解析版) 题型:解答题

(2007•芜湖)如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).
(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧);
(2)求线段BC的对应线段B′C′所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一次函数》(07)(解析版) 题型:解答题

(2007•芜湖)如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).
(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧);
(2)求线段BC的对应线段B′C′所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源:2007年安徽省芜湖市中考数学试卷(解析版) 题型:解答题

(2007•芜湖)如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).
(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P点一侧);
(2)求线段BC的对应线段B′C′所在直线的解析式.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《三角形》(02)(解析版) 题型:选择题

(2007•芜湖)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm,B的边长为5cm,C的边长为5cm,则正方形D的边长为( )

A.cm
B.4cm
C.cm
D.3cm

查看答案和解析>>

科目:初中数学 来源:2007年安徽省芜湖市中考数学试卷(解析版) 题型:选择题

(2007•芜湖)如图,Rt△ABC绕O点旋转90°得Rt△BDE,其中∠ACB=∠E=90°,AC=3,DE=5,则OC的长为( )

A.5+
B.4
C.3+2
D.4+

查看答案和解析>>

同步练习册答案