精英家教网 > 初中数学 > 题目详情
函数y=
2
4-x
与函数y=-
5-x
自变量取值范围分别是(  )
分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.
解答:解:4-x≠0,解得:x≠4;
5-x≥0,解得:x≤5.
故选C.
点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a≠0)自变量x与函数值y之间满足下列数量关系:
x -4 -3 -2 -1 0 1 2 3 4 5 6
y 24 15 8 3 0 -1 0 3 8 15  
(1)观察表中数据,当x=6时,y的值是
 

(2)这个二次函数与x轴的交点坐标是
 

(3)代数式
-b+
b2-4ac
2a
+
-b-
b2-4ac
2a
+(a+b+c)(a-b+c)的值是
 

(4)若s、t是两个不相等的实数,当s≤x≤t时,二次函数y=ax2+bx+c(a≠0)有最小值0和最大值24,那么经过点(s+1,t+1)的反比例函数解析式是
 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数y=ax2+bx+c(a≠0)自变量x与函数值y之间满足下列数量关系:
x-4-3-2-10123456
y2415830-103815
(1)观察表中数据,当x=6时,y的值是______;
(2)这个二次函数与x轴的交点坐标是______;
(3)代数式数学公式+数学公式+(a+b+c)(a-b+c)的值是______;
(4)若s、t是两个不相等的实数,当s≤x≤t时,二次函数y=ax2+bx+c(a≠0)有最小值0和最大值24,那么经过点(s+1,t+1)的反比例函数解析式是______.

查看答案和解析>>

科目:初中数学 来源:福州质检 题型:解答题

已知二次函数y=ax2+bx+c(a≠0)自变量x与函数值y之间满足下列数量关系:
x -4 -3 -2 -1 0 1 2 3 4 5 6
y 24 15 8 3 0 -1 0 3 8 15  
(1)观察表中数据,当x=6时,y的值是______;
(2)这个二次函数与x轴的交点坐标是______;
(3)代数式
-b+
b2-4ac
2a
+
-b-
b2-4ac
2a
+(a+b+c)(a-b+c)的值是______;
(4)若s、t是两个不相等的实数,当s≤x≤t时,二次函数y=ax2+bx+c(a≠0)有最小值0和最大值24,那么经过点(s+1,t+1)的反比例函数解析式是______.

查看答案和解析>>

科目:初中数学 来源:2006-2007学年福建省福州市时代中学九年级(上)期中数学试卷(解析版) 题型:解答题

已知二次函数y=ax2+bx+c(a≠0)自变量x与函数值y之间满足下列数量关系:
x-4-3-2-1123456
y241583-13815 
(1)观察表中数据,当x=6时,y的值是______;
(2)这个二次函数与x轴的交点坐标是______;
(3)代数式++(a+b+c)(a-b+c)的值是______;
(4)若s、t是两个不相等的实数,当s≤x≤t时,二次函数y=ax2+bx+c(a≠0)有最小值0和最大值24,那么经过点(s+1,t+1)的反比例函数解析式是______.

查看答案和解析>>

科目:初中数学 来源:2006年福建省福州市初中学业质量检查数学试卷(解析版) 题型:解答题

已知二次函数y=ax2+bx+c(a≠0)自变量x与函数值y之间满足下列数量关系:
x-4-3-2-1123456
y241583-13815 
(1)观察表中数据,当x=6时,y的值是______;
(2)这个二次函数与x轴的交点坐标是______;
(3)代数式++(a+b+c)(a-b+c)的值是______;
(4)若s、t是两个不相等的实数,当s≤x≤t时,二次函数y=ax2+bx+c(a≠0)有最小值0和最大值24,那么经过点(s+1,t+1)的反比例函数解析式是______.

查看答案和解析>>

同步练习册答案