精英家教网 > 初中数学 > 题目详情
精英家教网如图,两个圆与三个半圆彼此相切,它们的半径都是1单位,并且它们又都与一个大半圆相切,则阴影部分的面积为(  )
A、π
B、
π
2
C、
5
6
π
D、
7
6
π
分析:根据两个圆与三个半圆彼此相切,它们的半径都是1单位,并且它们又都与一个大半圆相切,则可表示出阴影部分的面积,进而得出答案.
解答:解:根据两个圆与三个半圆彼此相切,它们的半径都是1单位,并且它们又都与一个大半圆相切,
∴阴影部分的面积=(
1
2
•π32-3•
1
2
•π•12-2•π•12
1
3
+
1
2
•π•12=
π
3
+
π
2
=
5
6
π

故选C.
点评:本题考查了相切两圆的性质,属于基础题,关键是正确表示出阴影部分的面积即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,以矩形OCPD的顶点O为原点,它的两条边所在的直线分别为x轴和y轴建立直角坐标系.以点P为圆心,精英家教网PC为半径的⊙P与x轴的正半轴交于A、B两点,若抛物线y=ax2+bx+4经过A,B,C三点,且AB=6.
(1)求⊙P的半径R的长;
(2)求该抛物线的解析式并直接写出该抛物线与⊙P的第四个交点E的坐标;
(3)若以AB为直径的圆与直线AC的交点为F,求AF的长.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》常考题集(25):2.7 最大面积是多少(解析版) 题型:解答题

如图,以矩形OCPD的顶点O为原点,它的两条边所在的直线分别为x轴和y轴建立直角坐标系.以点P为圆心,PC为半径的⊙P与x轴的正半轴交于A、B两点,若抛物线y=ax2+bx+4经过A,B,C三点,且AB=6.
(1)求⊙P的半径R的长;
(2)求该抛物线的解析式并直接写出该抛物线与⊙P的第四个交点E的坐标;
(3)若以AB为直径的圆与直线AC的交点为F,求AF的长.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》常考题集(26):2.3 二次函数的应用(解析版) 题型:解答题

如图,以矩形OCPD的顶点O为原点,它的两条边所在的直线分别为x轴和y轴建立直角坐标系.以点P为圆心,PC为半径的⊙P与x轴的正半轴交于A、B两点,若抛物线y=ax2+bx+4经过A,B,C三点,且AB=6.
(1)求⊙P的半径R的长;
(2)求该抛物线的解析式并直接写出该抛物线与⊙P的第四个交点E的坐标;
(3)若以AB为直径的圆与直线AC的交点为F,求AF的长.

查看答案和解析>>

科目:初中数学 来源:第27章《二次函数》常考题集(26):27.3 实践与探索(解析版) 题型:解答题

如图,以矩形OCPD的顶点O为原点,它的两条边所在的直线分别为x轴和y轴建立直角坐标系.以点P为圆心,PC为半径的⊙P与x轴的正半轴交于A、B两点,若抛物线y=ax2+bx+4经过A,B,C三点,且AB=6.
(1)求⊙P的半径R的长;
(2)求该抛物线的解析式并直接写出该抛物线与⊙P的第四个交点E的坐标;
(3)若以AB为直径的圆与直线AC的交点为F,求AF的长.

查看答案和解析>>

科目:初中数学 来源:第20章《二次函数和反比例函数》常考题集(26):20.5 二次函数的一些应用(解析版) 题型:解答题

如图,以矩形OCPD的顶点O为原点,它的两条边所在的直线分别为x轴和y轴建立直角坐标系.以点P为圆心,PC为半径的⊙P与x轴的正半轴交于A、B两点,若抛物线y=ax2+bx+4经过A,B,C三点,且AB=6.
(1)求⊙P的半径R的长;
(2)求该抛物线的解析式并直接写出该抛物线与⊙P的第四个交点E的坐标;
(3)若以AB为直径的圆与直线AC的交点为F,求AF的长.

查看答案和解析>>

同步练习册答案