精英家教网 > 初中数学 > 题目详情
15.用适当的方法解方程
(1)x2+x-2=0
(2)(3x-1)2-4(2x+3)2=0.

分析 (1)直接利用十字相乘法分解因式,再解一元一次方程即可;
(2)利用平方差公式分解因式,合并后解一元一次方程即可.

解答 解:(1)x2+x-2=0,
(x+2)(x-1)=0,
x+2=0,x-1=0,
解得:x1=-2,x2=1;
(2)(3x-1)2-4(2x+3)2=0,
(3x-1)2-[2(2x+3)]2=0,
[3x-1+2(2x+3)][3x-1-2(2x+3)]=0,
(3x-1+4x+6)(3x-1-4x-6)=0,
(7x+5)(-x-7)=0,
7x+5=0,x+7=0,
解得:x1=-$\frac{5}{7}$,x2=-7.

点评 此题考查了解一元二次方程-因式分解法,利用此方法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.在五一黄金周期间,小明、小亮等同学随家人一同到江郎山游玩.如图是买门票时,小明与他爸爸的对话.问题:

(1)小明他们一共去了几个成人?几个学生?
(2)请你帮小明算一算,用哪种方式买票更省钱?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知关于x、y的方程组$\left\{\begin{array}{l}{x-y=3}\\{2x+y=6a}\end{array}\right.$的解满足不等式x<2y-3,求实数a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,以△ADE的边AD为直径的⊙O交AE于B,交DE于C,$\widehat{AB}$=$\widehat{BC}$,求证:BC=BE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知正方形ABCD和正方形AEFG,点F在边AB上,点M为DF的中点,连GM.
(1)图1中,①在图1中画出AEF绕A点逆转90°后的图形.
(2)在图1中,求证:BF=2MG.
(3)将图1中的正方形AEFG绕点A点逆时针旋转至图2的位置,其他的条件不变,同(1)中的结论还成立否,请证明.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,正方形ABCD中,AE=EF=FB,BG=2CG,DE,DF分别交AG于P、Q,S四边形GCDQ:S四边形BGQF==17:9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.解方程:$\sqrt{4x-3}$+3x=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.解方程:
(1)(x+3)3=-27
(2)9(x+1)2=16.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,已知△ABD与△BCD都是边长为3厘米的等边三角形,以A为圆心,AB长为半径画弧BD;以B为圆心,BC长为半径画弧CD,求阴影部分图形的周长.

查看答案和解析>>

同步练习册答案