精英家教网 > 初中数学 > 题目详情
13.三个互不相等的有理数,既可以表示为1、a+b、a的形式,又可以表示为0、$\frac{b}{a}$、b的形式,则a2015+b2016的值0.

分析 根据三个互不相等的有理数,既可以表示为1,a+b,a的形式,又可以表示为0,$\frac{b}{a}$,b的形式,也就是说这两个数组的数分别对应相等,即a+b与a中有一个是0,$\frac{b}{a}$与b中有一个是1,再根据分式有意义的条件判断出a、b的值,代入代数式进行计算即可.

解答 解:∵三个互不相等的有理数,既表示为1,a+b,a的形式,又可以表示为0,$\frac{b}{a}$,b的形式,
∴这两个数组的数分别对应相等.
∴a+b与a中有一个是0,$\frac{b}{a}$与b中有一个是1,但若a=0,会使 $\frac{b}{a}$无意义,
∴a≠0,只能a+b=0,即a=-b,于是 $\frac{b}{a}$.只能是b=1,于是a=-1.
∴a2015+b2016=(-1)2015+12016=-1+1=0
故答案为:0;

点评 本题考查的是有理数及无理数的概念,能根据题意得出“a+b与a中有一个是0,$\frac{b}{a}$与b中有一个是1”是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.如图,在平面直角坐标系中,点A(2,0),点B(6,4),点P是直线y=x上一点,若∠1=∠2,则点P的坐标是(3,3).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.已知8×2x=212,那么x=9.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知a+b+c=0,a2+b2+c2=4,那么a4+b4+c4的值等于8.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,在△ABC中,D是BC上的一点,DE平分∠ADB,DF平分∠ADC,且EF∥BC,若EF交AD于M,EF=18,则DM=9.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列方程中,关于x的一元一次方程是(  )
A.x2+2x=x2-1B.$\frac{1}{{x}^{2}}$+$\frac{1}{x}$-2=0C.ax2+bx+c=0D.(x+1)2=2(x+1)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,点D是△ABC的AB边上一点,且AB=6,BD=4,AC=2$\sqrt{3}$.
(1)求证:△ACD∽△ABC.
(2)若BC=9,求CD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.若a、b是关于x的一元二次方程x2-6x+n+1=0的两根,且等腰三角形三边长分别为a、b、4,则n的值为(  )
A.8B.7C.8或7D.9或8

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.将一张面值为50元的人民币,兑换成10元或20元的零钱,兑换方案有(  )
A.3种B.4种C.5种D.6种

查看答案和解析>>

同步练习册答案