【题目】已知:正方形ABCD的边长为2,点M在射线BC上,且∠BAM=θ,射线AM交BD于点N,作CE⊥AM于点E.
(1)如图1,当点M在边BC上时,则θ的取值范围是(点M与端点B不重合) ;∠NCE与∠BAM的数量关系是 ;
(2)若点M在BC的延长线时;
①依题意,补全图2;
②(1)中的∠NCE与∠BAM的数量关系是否发生变化?若变化,写出数量关系,并说明理由.
【答案】(1);(或)(2)①图见解析;②变化:(或)
【解析】
(1)连接AC,根据∠BAC=45°解答即可求出的取值范围;通过证明△BAN≌△BCN可证明∠BAM=∠BCN,根据∠BAM+∠AMB=90°,∠ECM+∠CME=90°,∠AMB=∠CME可知∠BAM=∠ECM,即可证明;(2)①根据题意画出图形即可;②连接AC,根据正方形的性质可证明AN=CN,即可证明∠NAC=∠NCA,根据外角性质及直角三角形两锐角互余即可求出∠NCE=180°-2∠BAN.
(1)连接AC,则∠BAC=45°,
∵M在BC上,不与B重合,
∴≤45°.
∵AB=BC,∠ABN=∠CBN=45°,BN=BN,
∴△BAN≌△BCN,
∴∠BAM=∠BCN,
∵∠BAM+∠AMB=90°,∠ECM+∠CME=90°,∠AMB=∠CME
∴∠BAM=∠ECM,
∴∠NCE=∠BCN+∠ECM=2∠BAM
故答案为:≤45°;(或).
(2)①补全图如下:
②有变化;∠NCE=180°-2∠BAN.理由如下:
如图:连接AC,
∵AC、BD是正方形ABCD的对角线,
∴NA=NC,
∴∠NAC=∠NCA,
∴∠ENC=2∠NAC,
∵∠NAC=∠BAN-45°,∠ENC=90°-∠NCE,
∴90°-∠NCE=2(∠BAN-45°)
∴∠NCE=180°-2∠BAN.(或)
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的对角线AC=12,面积为24,△ABE是等边三角形,若点P在对角线AC上移动,则PD+PE的最小值为( )
A. 4 B. 4 C. D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( )
A. 当AB=BC时,它是菱形 B. 当AC⊥BD时,它是菱形
C. 当∠ABC=90°时,它是矩形 D. 当AC=BD时,它是正方形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了加强学生的安全意识,某校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题:
(1)A组的频数a比B组的频数b小24,样本容量 , a为:
(2)n为°,E组所占比例为%:
(3)补全频数分布直方图;
(4)若成绩在80分以上优秀,全校共有2000名学生,估计成绩优秀学生有名.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,∠DAE=∠E,∠B=∠D.直线AD与BE平行吗?直线AB与DC平行吗?说明理由(请在下面的解答过程的空格内填空或在括号内填写理由).
解:直线AD与BE平行,直线AB与DC .
理由如下:
∵∠DAE=∠E,(已知)
∴ ∥ ,(内错角相等,两条直线平行)
∴∠D=∠DCE. (两条直线平行,内错角相等)
又∵∠B=∠D,(已知)
∴∠B= ,(等量代换)
∴ ∥ .(同位角相等,两条直线平行)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1 , 如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1 , 使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.
(1)求证:△ABM≌△BCN;
(2)求∠APN的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com