精英家教网 > 初中数学 > 题目详情

【题目】已知:正方形ABCD的边长为2,点M在射线BC上,且∠BAMθ,射线AMBD于点N,作CEAM于点E

(1)如图1,当点M在边BC上时,则θ的取值范围是(M与端点B不重合)   ;∠NCE与∠BAM的数量关系是   

(2)若点MBC的延长线时;

依题意,补全图2

②(1)中的∠NCE与∠BAM的数量关系是否发生变化?若变化,写出数量关系,并说明理由.

【答案】(1)(或)(2)①图见解析②变化:(或

【解析】

(1)连接AC,根据∠BAC=45°解答即可求出的取值范围;通过证明△BAN≌△BCN可证明∠BAM=∠BCN,根据∠BAM+∠AMB=90°,∠ECM+∠CME=90°,∠AMB=∠CME可知∠BAM=∠ECM,即可证明;(2)根据题意画出图形即可;②连接AC,根据正方形的性质可证明AN=CN,即可证明∠NAC=∠NCA,根据外角性质及直角三角形两锐角互余即可求出∠NCE=180°-2∠BAN.

(1)连接AC,则∠BAC=45°,

∵MBC上,不与B重合,

≤45°.

∵AB=BC,∠ABN=∠CBN=45°,BN=BN,

∴△BAN≌△BCN,

∴∠BAM=∠BCN,

∵∠BAM+∠AMB=90°,∠ECM+∠CME=90°,∠AMB=∠CME

∴∠BAM=∠ECM,

∴∠NCE=∠BCN+∠ECM=2∠BAM

故答案为:≤45°;(或).

(2)补全图如下

有变化∠NCE=180°-2∠BAN.理由如下:

如图:连接AC,

∵AC、BD是正方形ABCD的对角线

∴NA=NC,

∴∠NAC=∠NCA,

∴∠ENC=2∠NAC,

∵∠NAC=∠BAN-45°,∠ENC=90°-∠NCE,

∴90°-∠NCE=2(∠BAN-45°)

∴∠NCE=180°-2∠BAN.(或

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的对角线AC=12,面积为24,ABE是等边三角形,若点P在对角线AC上移动,则PD+PE的最小值为(  )

A. 4 B. 4 C. D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE.连接BG并延长与AC交于点F,若AD=9,CE=12,则GF为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD是平行四边形,下列结论中不正确的是(  )

A. ABBC时,它是菱形 B. ACBD时,它是菱形

C. 当∠ABC90°时,它是矩形 D. ACBD时,它是正方形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了加强学生的安全意识,某校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题:
(1)A组的频数a比B组的频数b小24,样本容量 , a为
(2)n为°,E组所占比例为%:
(3)补全频数分布直方图;
(4)若成绩在80分以上优秀,全校共有2000名学生,估计成绩优秀学生有名.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,DAE=EB=D.直线AD与BE平行吗?直线AB与DC平行吗?说明理由(请在下面的解答过程的空格内填空或在括号内填写理由).

解:直线AD与BE平行,直线AB与DC

理由如下:

∵∠DAE=E,(已知)

,(内错角相等,两条直线平行)

∴∠D=DCE. (两条直线平行,内错角相等)

∵∠B=D,(已知)

∴∠B= ,(等量代换)

.(同位角相等,两条直线平行)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=10,AC=2 ,BC边上的高AD=6,则另一边BC等于(
A.10
B.8
C.6或10
D.8或10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1 , 如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn1 , 使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.

(1)求证:ABM≌△BCN;

(2)求APN的度数.

查看答案和解析>>

同步练习册答案