【题目】下列说法正确的是( )
A.了解一批灯泡的使用寿命采用全面调查
B.一组数据6,5,3,5,4的众数是5,中位数是3
C.“367人中必有2人的生日是同一天”是必然事件
D.一组数据10,11,12,9,8的平均数是10,方差是1.5
科目:初中数学 来源: 题型:
【题目】八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线将这八个正方形分成面积相等的两部分,则该直线的解析式为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019新型冠状病毒,因武汉病毒性肺炎病例而被发现,2020年1月12日被世界卫生组织命名“2019-nCoV”.冠状病毒是一个大型病毒家族,借助电子显微镜,我们可以看到这些病毒直径约为125纳米(1纳米=1 10-9米),125纳米用科学记数法表示等于( )米
A.1.2510-10B.1.2510-11C.1.25 10-8D.1.2510-7
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=BC,以BC为直径作⊙ O交AC于点E,过点E作AB的垂线交AB于点F,交CB的延长线于点G.
(1)求证:EG是⊙O的切线;
(2)若BG=OB,AC=6,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销件.已知产销两种产品的有关信息如下表:
产品 | 每件售价(万元) | 每件成本(万元) | 每年其他费用(万元) | 每年最大产销量(件) |
甲 | 6 | 20 | 200 | |
乙 | 30 | 20 | 80 |
其中为常数,且.
(1)若产销甲、乙两种产品的年利润分别为万元、万元,直接写出、与的函数关系式(写出自变量的取值范围);
(2)分别求出产销两种产品的最大年利润;
(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据完全平方公式可以作如下推导(a、b都为非负数)
∵ a-2+b=(-)2≥0 ∴ a-2+b≥0
∴ a+b≥2 ∴ ≥
其实,这个不等关系可以推广,≥
… …
(以上an都是非负数)
我们把这种关系称为:算术—几何均值不等式
例如:x为非负数时,,则有最小值.
再如:x为非负数时,x+x+.
我们来研究函数:
(1)这个函数的自变量x的取值范围是 ;
(2)完成表格并在坐标系中画出这个函数的大致图象;
x | … | -3 | -2 | -1 | 1 | 2 | 3 | … | ||
y | … | 3 | 5 | … |
(3)根据算术—几何均值不等式,该函数在第一象限有最 值,是 ;
(4)某同学在研究这个函数时提出这样一个结论:当x>a时,y随x增大而增大,则a的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校七年级共有500名学生,为了解该年级学生的课外阅读情况,将从中随机抽取的40名学生一个学期的阅读量(阅读书籍的本数)作为样本,根据数据绘制了如下的表格和统计图:
等级 | 阅读量(本) | 频数 | 频率 |
E | x≤2 | 4 | 0.1 |
D | 2<x≤4 | 12 | 0.3 |
C | 4<x≤6 | a | 0.35 |
B | 6<x≤8 | c | b |
A | x>8 | 4 | 0.1 |
根据上面提供的信息,回答下列问题:
(1)统计表中的 , ;并补全条形统计图;
(2)根据抽样调查结果,请估计该校七年级学生一学期的阅读量为“等”的有多少人?
(3)样本中阅读量为“等”的4名学生中有2名男生和2名女生,现从中随机挑选2名同学参加区里举行的“语文学科素养展示”活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形的顶点为坐标原点,且与反比例函数的图象相交于,两点,且点的纵坐标为,已知点,则的值为( ).
A.B.C.9D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com