精英家教网 > 初中数学 > 题目详情
11.已知:一次函数y=-x+8与两坐标轴分别交于A、B点,P为线段AB上的任意一点,过P点作PE⊥OA于点E,作PF⊥OB于F点,当长方形PEOF的面积最大时,P点坐标为(4,4).

分析 设点P的坐标为(x,-x+8),继而根据矩形的面积公式可用含x的代数式表示长方形PEOF的面积,再利用配方法确定最值即可.

解答 解:设点P的坐标为(x,-x+8),
长方形PEOF的面积为x(-x+8)=-x2+8x=-(x-4)2+16,
∵0<x<8,
∴当x=4时,长方形PEOF的面积取得最大值,点P坐标为(4,4).
故答案为:(4,4).

点评 本题考查了一次函数图象上点的坐标特征,解答本题的关键是熟练点的坐标与线段长度之间的转化,掌握矩形的面积计算公式,总体来说本题难度不大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.①新华书店推出售书优惠方案:一次性购书不超过100 元,不享受优惠;一次性购书超过100元但不超过200元一律打九折;一次性购书200元以上一律打八折.
(1)如果小明一次性购书的原价为250元,那么他实际付款200元;
(2)如果小华同学一次性购书付款162元,那么小华所购书的原价为多少元?
②一架飞机飞行在两个城市之间,风速为24千米/时,顺风飞行需要2小时50分,逆风飞行需要3小时,求两个城市之间的飞行路程.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.把下列各数填在相应的表示集合的大括号内
-2,-$\frac{1}{3}$,-|-3|,$\frac{22}{7}$,-0.3,1.7,0,-(-5),8
分数{-$\frac{1}{3}$,$\frac{22}{7}$,-0.3,1.7 …}
负分数{-$\frac{1}{3}$,-0.3…}
整数{-2,-|-3|0,-(-5)8 …}
自然数{0,-(-5),8 …}.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC的度数是(  )
A.100°B.108°C.120°D.126°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,等边△ABC的边长为6,
(1)求作它的内切圆⊙O;
(2)求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图所示,A、B两点的坐标分别是A(1,$\sqrt{2}$),B($\sqrt{5}$,0),如果把A、B两点的纵、横坐标都同时扩大2倍.
(1)求扩大后,点A、B的对应点D、E的坐标;
(2)△ODE的面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.把下列各数填入它所在的数集内:-$\frac{22}{7}$,-$\frac{π}{2}$,-0.1010010001…,0,-(-2.28),-|-4|,-32
正数集合:{-(-2.28)…} 
负分数集合:{-$\frac{22}{7}$…}
非正整数集合:{0,-|-4|,-32…}
无理数集合:{-$\frac{π}{2}$,-0.1010010001……}.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点是点A(3,0),其部分图象如图,则下列结论:
①2a+b=0;
②b2-4ac<0;
③一元二次方程ax2+bx+c=0(a≠0)的另一个解是x=-1;
④点(x1,y1),(x2,y2)在抛物线上,若x1<0<x2,则y1<y2
其中正确的结论是①③(把所有正确结论的序号都填在横线上)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.先化简,再求值:
(x+4y)2-(x+2y)(x-2y)-20y2,其中x=-4,y=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案