精英家教网 > 初中数学 > 题目详情
如图,抛物线与x轴交于点A(3,0),B(8,0),与y轴交于点C,且AC平分∠OCB,直线l是它的对称轴.
(1)求直线l和抛物线的解析式;
(2)直线BC与l相交于点D,沿直线l平移直线BC,与直线l,y轴分别交于点E,F,探究四边形CDEF为菱形时点E的坐标;
(3)线段CB上有一动点P,从C点开始以每秒一个单位的速度向B点运动,PM⊥BC,交线段CA于点M,记点P运动时间为t,△CPO与△CPM的面积之差为y,求y与t(0<t≤6)之间的关系式,并确定在运动过程中y的最大值.
(1)直线l的解析式x=
3+8
2
=
11
2

如图,过A作AK⊥BC于点K,
∵AC平分∠OCB,
∴AK=OA=3,CK=OC,AB=5,
∴KB=4.
方法一:设OC=x则CB=x+4,由勾股定理得:x2+82=(x+4)2,得x=6,
∴C的坐标为(0,6).
方法二:由△ABK△CBO得
AK
OC
=
KB
OB
,得OC=6,
∴C的坐标为(0,6)
设抛物线解析式为:y=a(x-3)(x-8),将点C坐标代入可得a=
1
4

∴所求抛物线解析式为:y=
1
4
(x-3)(x-8)

y=
1
4
x2-
11
4
x+6

(2)方法一:
如图,记直线l与x轴交于点N,则NB=2.5,
∵在Rt△OBC中,tanB=
OC
OB
=
3
4
,BC=
62+82
=10

cosB=
4
5
,则DN=NB•tanB=
5
2
×
3
4
=
15
8

DB=
NB
cosB
=
25
8

∴D点坐标为(
11
2
15
8
).
CD=BC-DB=10-
25
8
=
55
8
即菱形边长为
55
8
15
8
+
55
8
=
35
4
15
8
-
55
8
=-5,
∴E点坐标为(
11
2
35
4
)或(
11
2
,-5).
方法二:四边形CDEF为菱形时,有两种情况:
①当BC往下平移时,由菱形性质知,点E1即为直线CA与对称轴交点.
求得直线AC方程为:y=-2x+6,
与对称轴x=
11
2
的交点为E1
11
2
,-5).
②当BC往上平移时,即D点往上平移菱形的边长个单位得E2
求得直线BC:y=-
3
4
x+6
,与对称轴x=
11
2
交点D的纵坐标为yD=
15
8

菱形边长为yD-yE=
15
8
-(-5)=
55
8
,E2点纵坐标为:
15
8
+
55
8
=
35
4

∴四边形CDEF为菱形时,E1
11
2
,-5),E2
11
2
35
4
).
(3)过点P作PL⊥OC,垂足为L,则∠CPL=∠B,
而Rt△BOC中,sin∠B=
OC
BC
=
3
5
,cos∠B=
4
5

由题意得CP=t,则LP=CPcos∠B=
4t
5

△CPO的面积为:
1
2
OC•LP=
12
5
t

∵CA平分∠OCB,
∴∠MCP=∠OCA,
Rt△AOC中,tan∠OCA=
OA
OC
=
1
2

∴PM=
t
2

△CPM的面积为:
1
2
CP•PM=
1
4
t2

y=
12
5
t-
1
4
t2
(0<t≤6),
t=
24
5
时,y有最大值为
144
25

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,顶点为A的抛物线y=a(x+2)2-4交x轴于点B(1,0),连接AB,过原点O作射线OMAB,过点A作ADx轴交OM于点D,点C为抛物线与x轴的另一个交点,连接CD.
(1)求抛物线的解析式(关系式);
(2)求点A,B所在的直线的解析式(关系式);
(3)若动点P从点O出发,以每秒1个单位长度的速度沿着射线OM运动,设点P运动的时间为t秒,问:当t为何值时,四边形ABOP分别为平行四边形?等腰梯形?
(4)若动点P从点O出发,以每秒1个单位长度的速度沿线段OD向点D运动,同时动点Q从点C出发,以每秒2个单位长度的速度沿线段CO向点O运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t秒,连接PQ.问:当t为何值时,四边形CDPQ的面积最小?并求此时PQ的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线的顶点为(3,3),且点(2,-2)在抛物线上,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点A的坐标为(1,
3
),点B的坐标(-2,0),点O为原点.
(1)求过点A,O,B的抛物线解析式;
(2)在x轴上找一点C,使△ABC为直角三角形,请直接写出满足条件的点C的坐标;
(3)将原点O绕点B逆时针旋转120°后得点O′,判断点O′是否在抛物线上,请说明理由;
(4)在x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点E,线段OE把△AOB分成两个三角形,使其中一个三角形面积与四边形BPOE面积比为2:3,若存在,求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,顶点坐标为(2,-1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.
(1)求抛物线的表达式;
(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;
(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

随着海峡两岸交流日益增强,通过“零关税”进入我市的一种台湾水果,其进货成本是每吨0.5万元,这种水果市场上的销售量y(吨)是每吨的销售价x(万元)的一次函数,且x=0.6时,y=2.4;x=1时,y=2.
(1)求出销售量y(吨)与每吨的销售价x(万元)之间的函数关系式;
(2)若销售利润为w(万元),请写出w与x之间的函数关系式,并求出销售价为每吨2万元时的销售利润.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=-
2
3
x2+bx+c经过A(0,-4)、B(x1,0)、C(x2,0)三点,且x2-x1=5.
(1)求b、c的值;
(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;
(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,顶点为D的抛物线y=x2+bx-3与x轴相交于A,B两点,与y轴相交于点C,连接BC,已知△BOC是等腰三角形.
(1)求点B的坐标及抛物线y=x2+bx-3的解析式;
(2)求四边形ACDB的面积;
(3)若点E(x,y)是y轴右侧的抛物线上不同于点B的任意一点,设以A,B,C,E为顶点的四边形的面积为S.
①求S与x之间的函数关系式.
②若以A,B,C,E为顶点的四边形与四边形ACDB的面积相等,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,一条抛物线与x轴相交于A、B两点(点A在点B的左侧),其顶点P在线段MN上移动.若点M、N的坐标分别为(-1,-2)、(1,-2),点B的横坐标的最大值为3,则点A的横坐标的最小值为(  )
A.-3B.-1C.1D.3

查看答案和解析>>

同步练习册答案