A. | ∠BAD=∠CAD | |
B. | 点D到AB边的距离就等于线段CD的长 | |
C. | S△ABD=S△ACD | |
D. | AD垂直平分MN |
分析 根据作图方法可得AD平分∠CAB,由角平分线的定义和性质可得A、B说法正确,根据三角形的面积公式可得C错误,根据题目所给条件可证明△AMO≌△ANO,进而可得MO=NO,∠MOA=∠NOA,从而证得D选项说法正确.
解答 解:根据题意可得AD平分∠CAB,
∵AD平分∠CAB,
∴∠BAD=∠CAD,故A说法正确;
∵AD平分∠CAB,
∴点D到AB边的距离就等于线段CD的长,故B说法正确;
∵点D到AB边的距离就等于线段CD的长,AB>AC,
∴S△ABD>S△ACD,故C说法错误;
在△AMO和△ANO中,
$\left\{\begin{array}{l}{AM=AN}\\{∠MAO=∠NAO}\\{AO=AO}\end{array}\right.$,
∴△AMO≌△ANO(SAS),
∴MO=NO,∠MOA=∠NOA,
∵∠MOA+∠NOA=180°,
∴∠MOA=90°,
∴AO⊥MN,
∴AD垂直平分MN,故D说法正确.
故选:C.
点评 此题主要考查了基本作图,关键是掌握角平分线的作法.
科目:初中数学 来源: 题型:选择题
A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | x=$\frac{\sqrt{5}±\sqrt{11}}{2}$ | B. | x=$\frac{\sqrt{5}±\sqrt{29}}{4}$ | C. | x=$\frac{-\sqrt{5}±\sqrt{29}}{2}$ | D. | x=$\frac{-\sqrt{5}±\sqrt{29}}{4}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com