精英家教网 > 初中数学 > 题目详情
(2013•莒南县一模)如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC
(1)求证:AD=EC;
(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形;
(3)在(2)的条件下,若AB=AO,求tan∠OAD的值.
分析:(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形,即得AD=CE;
(2)由∠BAC=90°,AD上斜边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,即证;
(3)利用(2)的结论和三角形中位线的性质即可求出tan∠OAD的值.
解答:解:(1)证明:∵DE∥AB,AE∥BC,
∴四边形ABDE是平行四边形,
∴AE∥BD且AE=BD,
又∵AD是边BC上的中线,
∴BD=CD,
∴四边形ADCE是平行四边形
∴AD=EC;

(2)∵∠BAC=90°,AD是斜边BC上的中线,
∴AD=BD=CD
又∵四边形ADCE是平行四边形
∴四边形ADCE是菱形;

(3)∵四边形ADCE是菱形,
∴AO=CO,∠AOD=90°
又∵BD=CD,
∴OD是△ABC的中位线,则OD=
1
2
AB,
∵AB=AO,
∴OD=
1
2
AO,
∴在Rt△AOD中,tan∠OAD=
OD
OA
=
1
2
点评:本题考查了平行四边形和菱形的判定和性质,(1)证得四边形ABDE,四边形ADCE为平行四边形即得;(2)由∠BAC=90°,AD上斜边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,从而证得四边形ADCE是菱形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莒南县一模)今年某市约有68490名应届初中毕业生参加中考,按四舍五入保留两位有效数字,68490用科学记数法可表示为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莒南县一模)在6张卡片上分别写有1-6的六个整数,随机抽取一张,那么抽出的数字能被3整除的概率是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莒南县一模)在等腰直角三角形ABC中,∠C=90°,AC=8,点F是AB的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE,则四边形CDFE的面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莒南县一模)如图,直线l:y=-x-
2
与坐标轴交于A,C两点,过A,O,C三点作⊙O1,点E为劣弧AO上一点,连接EC,EA,EO,当点E在劣弧AO上运动时(不与A,O两点重合),
EC-EA
EO
的值是否发生变化?(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莒南县一模)设a,b,c分别是△ABC的三条边,且∠A=60°,那么
c
a+b
+
b
a+c
的值是
1
1

查看答案和解析>>

同步练习册答案