精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,OAC上一个动点,过点O作直线MNBC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.

1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论;

3)若AC边上存在点O,使四边形AECF是正方形且,求∠B的大小.

【答案】见解析

【解析】试题分析:(1)根据MNBCCE平分∠ACBCF平分∠ACD及等角对等边即可证得OE=OF

(2)根据矩形的性质可知:对角线且互相平分,即AO=COOE=OF,故当点O运动到AC的中点时,四边形AECF是矩形;

(3)当四边形AECF是正方形时,可得:AOEF,又BCEF,则ACBC,在正方形AECF中,AC=AE,根据,可得:tanB=,故∠B=60°.

解:(1)证明:∵MNBCCE平分∠ACBCF平分∠ACD

∴∠BCE=∠ACE=∠OEC,∠OCF=∠FCD=∠OFC

OE=OCOC=OF

OE=OF

(2)当O运动到AC中点时,四边形AECF是矩形,

AO=COOE=OF

∴四边形AECF是平行四边形,

∵∠ECA+ACF=BCD

∴∠ECF=90°,

∴四边形AECF是矩形.

3)当四边形AECF是正方形时,AOEFAC=AE

BCEF

ACBC.

BC= AE

tanB=

∴∠B=60°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在△ABC中,点D是AB边上一点(不与AB重合),AD=kBD,过点D作∠EDF+∠C=180°,与CA、CB分别交于E、F.
(1)如图1,当DE=DF时,求的值.
(2)如图2,若∠ACB=90°,∠B=30°,DE=m,求DF的长(用含k,m的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】骰子是一种特别的数字立方体(见右图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在平行四边形ABCD中,AMCN都是BD的垂线,MN是垂足.

求证:(1AM=CN(2)MAN=NCM

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OD平分∠BOC,OE平分∠AOC,∠BOC=60°,∠AOC=58°.

(1)求出∠AOB及其补角的度数;

(2)①请求出∠DOC和∠AOE的度数;

②判断∠DOE与∠AOB是否互补,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知O为直线AB上一点,∠COE是直角,OF平分∠AOE.

(1)如图①,若∠COF=34°,则∠BOE=________;若∠COF=n°,则∠BOE=________;∠BOE与∠COF的数量关系为________________.

(2)当射线OE绕点O逆时针旋转到如图②的位置时,(1)中∠BOE与∠COF的数量关系是否仍然成立?请说明理由.

(3)在图③中,若∠COF=65°,在∠BOE的内部是否存在一条射线OD,使得2∠BOD与∠AOF的和等于∠BOE与∠BOD的差的一半?若存在,请求出∠BOD的度数;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明袋子中装有颜色不同的黑、白两种球共40个球,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.如图是摸到白球的频率折线统计图:

(1)根据统计图,估算盒子里黑、白两种颜色的球各多少个?

(2)如果要使摸到白球的概率为,需要往盒子里再放入多少个白球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.求ABCD的周长和面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着信息技术的快速发展,互联网+渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了AB两种上网学习的月收费方案:

A方案:月租7元,可上网25小时,若超时,超出部分按每分钟0.01元收费;

B方案:月租10元,可上网50小时,若超时,超出部分按每分钟0.01元收费;

设每月上网学习时间为小时.

1)当50时,用含有x的代数式分别表示AB两种上网的费用;

2)当x100时,分别求出两种上网学习的费用.

3)若上网40小时,选择哪种方式上网学习合算,为什么?

查看答案和解析>>

同步练习册答案