精英家教网 > 初中数学 > 题目详情
1.解方程:
①$\frac{4}{x-2}$-$\frac{x}{x-2}$=1;
②$\frac{4}{{x}^{2}-4}$+$\frac{x+3}{x-2}$=$\frac{x-1}{x+2}$.

分析 ①分式方程两边乘以(x-2)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;
②分式方程两边乘以(x+2)(x-2)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.

解答 解:①去分母得:4-x=x-2,
解得:x=3,
经检验x=3是原分式方程的解;
②去分母得:4+x2+5x+6=x2-3x+2,
解得:x=-1,
经检验x=-1是原分式方程的解.

点评 此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.如图,一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(1,0),然后接着按图中箭头所示方向跳动,即(0,0)→(0,1)→(1,1)→(0,1)→…,且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是(0,5).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,点A是双曲线y=-$\frac{9}{x}$在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=$\frac{k}{x}$上运动,则k的值为3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD是平行四边形的条件是(  )
A.OA=OC,AD∥BCB.∠ABC=∠ADC,AD∥BC
C.AB=DC,AD=BCD.∠ABD=∠ADB,∠BAO=∠DCO

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算:
(1)$\sqrt{4}-\sqrt{0.16}+\root{3}{-64}$;
(2)2($\sqrt{2}$)2-$\sqrt{(-3)^{2}}-2(\sqrt{3}-1)-$|$\sqrt{3}$-2|.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,已知点A1,A2,…,An均在直线y=x-2上,点B1,B2,…,Bn均在双曲线y=-$\frac{4}{x}$上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,AnBn⊥x轴,BnAn+1⊥y轴,…,记点An的横坐标为an(n为正整数).若a1=-2,则a2016=1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.反比例函数y=$\frac{k}{x}$的图象经过点A(-2,-5),则当1<x<2时,y的取值范围是(  )
A.-10<y<-5B.-2<y<-1C.5<y<10D.y>10

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.直线y=kx+b中,k<0,b>0,则此直线经过第一、二、四象限.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,矩形ABCD的两个顶点A,B在坐标轴上,AD:AB=1:2,且A(-2,0),∠BAO=60°,反比例函数y=$\frac{k}{x}$(k≠0)的图象恰好经过该矩形的顶点,则k=-2-$\sqrt{3}$或-6-$\sqrt{3}$.

查看答案和解析>>

同步练习册答案