精英家教网 > 初中数学 > 题目详情
16.已知二元一次方程组$\left\{\begin{array}{l}{3x+4y=2k}\\{2x-y=3k}\end{array}\right.$的解为x=m,y=n,且m+n=2,求k的值.

分析 先依据加减法求得方程组的解用含k的式子表示,将m、n用k的式子表示,最后求得k的值即可.

解答 解:$\left\{\begin{array}{l}{3x+4y=2k①}\\{2x-y=3k②}\end{array}\right.$
②×4+①得:11x=14k,
解得:x=$\frac{14}{11}$k.
将x=$\frac{14}{11}$k代入②得:$\frac{28}{11}$k-y=3k,解得:y=-$\frac{5}{11}$k.
∵m+n=2,x=m,y=n,
∴$\frac{14}{11}$k-$\frac{5}{11}$k=2.
∴$\frac{9}{11}$k=2.
∴k=$\frac{11}{18}$.

点评 本题主要考查的是二元一次方程组的解,用含k的式子表示出m、n的值是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=AB•AD,我们称该四边形为“可分四边形”,∠DAB称为“可分角”.
(1)如图2,若四边形ABCD为“可分四边形”,∠DAB为“可分角”,且∠DCB=∠DAB,则∠DAB=120°.
(2)如图3,在四边形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求证:四边形ABCD为“可分四边形”;
(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,BC=2,∠D=90°,求AD的长?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.k取什么实数时,关于x的方程(k-2)x2-2x+1=0.
(1)有两个不相等的实根;
(2)有一个实根;
(3)没有实根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在平面直角坐标系xOy中,一次函数的图象经过点4 (1,-3 ),B (2,0)
(Ⅰ)求这个一次函数的解析式;
(Ⅱ)若以O、A、B、C为顶点的四边形是平行四边形.
①请直接写出所有符合条件的C点坐标;
②如果以O、A、B、C为顶点的四边形为菱形,请直接写出点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.解方程组$\left\{\begin{array}{l}{11x+3z=9}\\{2x-6y+4z=5}\\{3x+2y+z=8}\end{array}\right.$,较简便的方法是(  )
A.先消z,再解$\left\{\begin{array}{l}{2x-6y=-15}\\{19x+9y=8}\end{array}\right.$
B.先消z,再解$\left\{\begin{array}{l}{11x+3y=9}\\{10x+14y=27}\end{array}\right.$
C.先消y,再解$\left\{\begin{array}{l}{11x+3z=9}\\{11x+7z=29}\end{array}\right.$
D.先消x,再解$\left\{\begin{array}{l}{22y+2z=61}\\{66y-38z=-33}\end{array}\right.$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA的度数为40°,则∠GFB的度数为70°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,已知在平行四边形ABCD中,AE⊥BC交于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′,若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为(  )
A.130°B.150°C.160°D.170°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在?ABCD中,过D作DE⊥AB于点E,点F在边CD上,CF=AE.
求证:四边形BFDE是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图(1),(2)、(3),…(n),点M,N分别是⊙O的内接等边三角形ABC,内接正方形ABCD,内接正五边形ABCDE,…,内接正n边形ABCDE…的边AB,BC上的点,且BM=CN,连接OM,ON.
(1)求图(1)中∠MON的度数;
(2)图(2)中∠MON的度数是90°;
(3)图(3)中∠MON的度数是72°.

查看答案和解析>>

同步练习册答案