精英家教网 > 初中数学 > 题目详情
(2007•威海)△ABC与平行四边形DEFG如图放置,点D,G分别在边AB,AC上,点E,F在边BC上.已知BE=DE,CF=FG,则∠A的度数( )

A.等于80°
B.等于90°
C.等于100°
D.条件不足,无法判断
【答案】分析:根据已知易证∠B=∠BDE,∠AGD=∠CGF,所以∠AGD+∠CGF+∠DGF=180,利用三角形外角的性质,知∠DGF+∠GDE=180°,所以∠B+∠C=90°,所以∠A的度数可求.
解答:解:∵BE=DE
∴∠B=∠BDE
∵四边形DEFG是平行四边形
∴∠ADG=∠B
∴∠ADG=∠BDE
同理:∠AGD=∠CGF
∵∠AGD+∠CGF+∠DGF=180°,∠DGF+∠GDE=180°
∴∠AGD+∠CGF=∠GDE
∵∠ADG+∠BDE+∠GDE=180°
∴∠ADG+∠BDE+∠AGD+∠CGF=180°
∴∠ADG+∠AGD=90°
∴∠B+∠C=90°
∴∠A=90°
故选B.
点评:此题主要考查了学生平行四边形,三角形的性质.在做这类题时要注意找到等角,等角替换由三角形的内角和定义最后求值.
练习册系列答案
相关习题

科目:初中数学 来源:2007年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2007•威海)如图1,在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(3,1),二次函数y=x2的图象记为抛物线l1
(1)平移抛物线l1,使平移后的抛物线过点A,但不过点B,写出平移后的一个抛物线的函数表达式:______(任写一个即可);
(2)平移抛物线l1,使平移后的抛物线过A,B两点,记为抛物线l2,如图2,求抛物线l2的函数表达式;
(3)设抛物线l2的顶点为C,K为y轴上一点.若S△ABK=S△ABC,求点K的坐标;
(4)请在图3上用尺规作图的方式探究抛物线l2上是否存在点P,使△ABP为等腰三角形.若存在,请判断点P共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年新人教版中考数学模拟试卷(1)(解析版) 题型:选择题

(2007•威海)下列四个点中,有三个点在同一条直线上,不在这条直线上的点是( )
A.(-3,-1)
B.(1,1)
C.(3,2)
D.(4,3)

查看答案和解析>>

科目:初中数学 来源:2010年山东省泰安市宁阳县中考数学模拟试卷(12)(解析版) 题型:选择题

(2007•威海)下列四个点中,有三个点在同一条直线上,不在这条直线上的点是( )
A.(-3,-1)
B.(1,1)
C.(3,2)
D.(4,3)

查看答案和解析>>

科目:初中数学 来源:2009年高中段自主招生科学素养模拟卷(数学部分)(解析版) 题型:解答题

(2007•威海)如图1,在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(3,1),二次函数y=x2的图象记为抛物线l1
(1)平移抛物线l1,使平移后的抛物线过点A,但不过点B,写出平移后的一个抛物线的函数表达式:______(任写一个即可);
(2)平移抛物线l1,使平移后的抛物线过A,B两点,记为抛物线l2,如图2,求抛物线l2的函数表达式;
(3)设抛物线l2的顶点为C,K为y轴上一点.若S△ABK=S△ABC,求点K的坐标;
(4)请在图3上用尺规作图的方式探究抛物线l2上是否存在点P,使△ABP为等腰三角形.若存在,请判断点P共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2007年山东省威海市中考数学试卷(解析版) 题型:选择题

(2007•威海)下列四个点中,有三个点在同一条直线上,不在这条直线上的点是( )
A.(-3,-1)
B.(1,1)
C.(3,2)
D.(4,3)

查看答案和解析>>

同步练习册答案