精英家教网 > 初中数学 > 题目详情
11.在同一平面内,△ABC和△ABD如图①放置,其中AB=BD.
小明做了如下操作:
将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DFA,如图②,请完成下列问题:
(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;
(2)连接EF,CD,如图③,求证:四边形CDFE是平行四边形.

分析 (1)根旋转的性质得AB=DF,BD=FA,由于AB=BD,所以AB=BD=DF=FA,则可根据菱形的判定方法得到四边形ABDF是菱形;
(2)由于四边形ABDF是菱形,则AB∥DF,且AB=DF,再根据旋转的性质易得四边形ABCE为平行四边形,根据平行四边形的性质得AB∥CE,且AB=CE,所以CE∥FD,CE=FD,所以可判断四边形CDEF是平行四边形.

解答 (1)解:四边形ABDF是菱形.理由如下:
∵△ABD绕着边AD的中点旋转180°得到△DFA,
∴AB=DF,BD=FA,
∵AB=BD,
∴AB=BD=DF=FA,
∴四边形ABDF是菱形;

(2)证明:∵四边形ABDF是菱形,
∴AB∥DF,且AB=DF,
∵△ABC绕着边AC的中点旋转180°得到△CEA,
∴AB=CE,BC=EA,
∴四边形ABCE为平行四边形,
∴AB∥CE,且AB=CE,
∴CE∥FD,CE=FD,
∴四边形CDEF是平行四边形.

点评 本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了平行四边形的判定和菱形的判定.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.长沙市中考体育分值已经提高到了60分,其中的必考项目就有男子引体向上和女子一分钟仰卧起坐,各校为此加强了对体育训练的重视.
      引体向上(男)和一分钟仰卧起坐(女)共16分 单位:次数
分值 1615 14 13 12 10 
 成绩男(次)  8 0.5
 女(次) 45 40 36 32 28 25 22 20<19
注:0.5次是指考生从直臂悬垂开始,有正确的引体动作和下杠动作,但未完整完成一次
某中学对全校学生这两项运动的成绩进行了统计,规定分值15分及以上为优秀,12分到14分为良好,6分到10分为合格,6分以下不合格,在全校800名初三学生中,随机抽取部分学生进行测试,并将测试成绩绘制成如下两幅不完整的统计图,求:
(1)某女生说她得了12分,请问她一分钟做了多少次仰卧起坐;
(2)请问一共抽取了多少名学生?并补全条形统计图;
(3)根据抽样结果估计,本校项目由多少学生能够得优秀?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,用尺规作出了BF∥OA,作图痕迹中,弧MN是(  )
A.以B为圆心,OD长为半径的弧B.以C为圆心,CD长为半径的弧
C.以E为圆心,DC长为半径的弧D.以E为圆心,OD长为半径的弧

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.2015年10月上市的某品牌手机经过连续两次降价,截至2016年3月底售价由原来的6500元/台,降至4200元/台.设平均每个季度的降价率为x,根据题意,可列出方程是(  )
A.4200(1+x)2=6500B.4200(1+2x)=6500C.6500(1-x)2=4200D.6500(1-2x)=4200

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C.
(1)求证:△ABF∽△EAD;
(2)若AD=3,∠BAE=30°,求BF的长.(计算结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知抛物线y=ax2+2x+6(a≠0)交x轴与A,B两点(点A在点B左侧),将直尺WXYZ与x轴负方向成45°放置,边WZ经过抛物线上的点C(4,m),与抛物线的另一交点为点D,直尺被x轴截得的线段EF=2,且△CEF的面积为6.
(1)求该抛物线的解析式;
(2)探究:在直线AC上方的抛物线上是否存在一点P,使得△ACP的面积最大?若存在,请求出面积的最大值及此时点P的坐标;若不存在,请说明理由.
(3)将直尺以每秒2个单位的速度沿x轴向左平移,设平移的时间为t秒,平移后的直尺为W′X′Y′Z′,其中边X′Y′所在的直线与x轴交于点M,与抛物线的其中一个交点为点N,请直接写出当t为何值时,可使得以C、D、M、N为顶点的四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,在△ABC中,AB=AC,∠BAC=50?.分别以B、C为圆心,BC长为半径画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD.则
①∠DAE=25度;
②若BC=9,$\widehat{DE}$与$\widehat{DF}$的长度之和为$\frac{11}{2}$π.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边的中点,则EM+CM的最小值为3$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.已知二次函数y=ax2+bx+c(a>0)的图象经过点A(-1,2),B(2,5),顶点坐标为(m,n),则下列说法错误的是(  )
A.c<3B.m≤$\frac{1}{2}$C.n≤2D.b<1

查看答案和解析>>

同步练习册答案