精英家教网 > 初中数学 > 题目详情
28、在△ABC中,AB=AC,∠ACB=∠ABC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.
(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;
(2)当三角尺沿AC方向平移到图2所在的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间满足的数量关系,然后证明你的猜想;(提示:过点D作DH⊥CG,可得四边形EDHG是长方形)
(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,试猜想DE,DF与CG之间满足的数量关系.(不用说明理由)
分析:(1)由于有∠F=∠G=90°,∠FAB=∠GAC,AB=AC,故由AAS证得△ABF≌△ACG?BF=CG;
(2)过点D作DH⊥CG于点H(如图).易证得四边形EDHG为矩形,有DE=HG,DH∥BG?∠GBC=∠HDC.又有AB=AC?∠FCD=∠GBC=∠HDC.又∠F=∠DHC=90°?CD=DC,可由AAS证得△FDC≌△HCD?DF=CH,有GH+CH=DE+DF=CG.
(3)同(2)可证得DE+DF=CG.
解答:解:(1)BF=CG;
证明:在△ABF和△ACG中,
∵∠F=∠G=90°,∠FAB=∠GAC,AB=AC,
∴△ABF≌△ACG(AAS),
∴BF=CG;

(2)DE+DF=CG;
证明:过点D作DH⊥CG于点H(如图),
∵DE⊥BA于点E,∠G=90°,DH⊥CG,
∴四边形EDHG为矩形,
∴DE=HG,DH∥BG,
∴∠GBC=∠HDC,
∵AB=AC,
∴∠FCD=∠GBC=∠HDC,
又∵∠F=∠DHC=90°,CD=DC,
∴△FDC≌△HCD(AAS),
∴DF=CH,
∴GH+CH=DE+DF=CG,即DE+DF=CG;

(3)DE+DF=CG.
证明:过点D作DH⊥CG于点H(如图),
∵DE⊥BA于点E,∠G=90°,DH⊥CG,
∴四边形EDHG为矩形,
∴DE=HG,DH∥BG,
∴∠GBC=∠HDC,
∵AB=AC,
∴∠FCD=∠GBC=∠HDC,
又∵∠F=∠DHC=90°,CD=DC,
∴△FDC≌△HCD(AAS),
∴DF=CH,
∴GH+CH=DE+DF=CG,
即DE+DF=CG.
点评:本题考查了等腰直角三角形的性质及全等三角形的判定和性质求解;作出辅助线是正确解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•宁德质检)如图,在△ABC中,AB=AC=6,点0为AC的中点,OE⊥AB于点E,OE=
32
,以点0为圆心,OA为半径的圆交AB于点F.
(1)求AF的长;
(2)连结FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•襄阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,将△ADC绕点A顺时针旋转,使AC与AB重合,点D落在点E处,AE的延长线交CB的延长线于点M,EB的延长线交AD的延长线于点N.
求证:AM=AN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=AC,把△ABC绕着点A旋转至△AB1C1的位置,AB1交BC于点D,B1C1交AC于点E.求证:AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•滨湖区一模)如图,在△ABC中,AB是⊙O的直径,∠B=60°,∠C=70°,则∠BOD的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•吉林)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作?ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.

查看答案和解析>>

同步练习册答案