精英家教网 > 初中数学 > 题目详情
6.把方程2x(x-1)=(x+3)(x-3)+6化成ax2+bx+c=0的形式为x2-2x+3=0.

分析 去括号、移项、合并同类项即可解决问题.

解答 解:由题意,2x2-2x=x2-9+6,
移项、合并同类项得x2-2x+3=0.
故答案为x2-2x+3=0.

点评 本题考查一元二次方程的一般式、多项式的乘法法则、移项法则、合并同类项法则等知识,解题的关键是熟练掌握多项式的乘法法则、移项法则、合并同类项法则,属于基础题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

16.若将P(1,-m)向右平移2个单位长度后,再向上平移1个单位长度得到点Q(n,3),则点(m,n)的实际坐标是(-2,3).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知(a+3)2+$\sqrt{b-5}$=0,求a-b的立方根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.一个多边形的内角和与外角和相等,它是几边形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.解方程
(1)5x+2(-x+3)=-6          
 (2)$\frac{0.1x-0.2}{0.02}$-$\frac{x+1}{0.5}$=3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,在矩形ABCD中,对角线AC.BD干H交于点O,点E.F分别是AO.AD中点,若AB=6,BC=8,则△AEF的周长为(  )
A.6B.8C.9D.10

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图①,在 Rt△ABC中,AB=4,BC=3,将△ABC绕点B顺时针旋转α(0<α<120°)得△DBE,连接AD,EC,直线AD、EC交于点M.
(1)当α=30°时,∠BAD=75°.
(2)在旋转的过程中,四边形ABCM的面积是否存在最大值?若存在,求出四边形ABCM面积的最大值;若不存在,请说明理由;
(3)如图②,若△ABC中,∠ABC=120°,其余条件不变,四边形ABCM的面积是否存在最大值?若存在,求出四边形ABCM面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.已知函数y=(m-3)x-$\frac{2}{3}$(m为常数),当m<3时,y随x的增大而减小.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.已知二次函数y=-2(x-2)2+3,当x=2时,y有最大值.

查看答案和解析>>

同步练习册答案