精英家教网 > 初中数学 > 题目详情
12.在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①,
然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,
②-①得,3S-S=39-1,即2S=39-1,
所以S=$\frac{{3}^{9}-1}{2}$.
得出答案后,爱动脑筋的张红想:如果把“3”换成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正确答案是$\frac{{m}^{2017}-1}{m-1}$(m≠0且m≠1).

分析 仿照例子,将3换成m,设S=1+m+m2+m3+m4+…+m2016(m≠0且m≠1),则有mS=m+m2+m3+m4+…+m2017,二者做差后两边同时除以m-1,即可得出结论.

解答 解:设S=1+m+m2+m3+m4+…+m2016(m≠0且m≠1)①,
将①×m得:mS=m+m2+m3+m4+…+m2017②,
由②-①得:mS-S=m2017-1,即S=$\frac{{m}^{2017}-1}{m-1}$,
∴1+m+m2+m3+m4+…+m2016=$\frac{{m}^{2017}-1}{m-1}$(m≠0且m≠1).
故答案为:$\frac{{m}^{2017}-1}{m-1}$(m≠0且m≠1).

点评 本题考查了规律型中的数字的变化类,解题的关键是仿照例子计算1+m+m2+m3+m4+…+m2016.本题属于基础题,难度不大,本题其实是等比数列的求和公式,但初中未接触过该方面的知识,需要借助于错位相减法来求出结论,此题中尤其要注意m的取值范围.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

2.为了求1+2+22+23+…+22016的值,可令S=1+2+22+23+…+22016,则2S=2+22+23+24+…+22017,因此2S-S=22017-1,所以1+2+22+23+…+22016=22017-1.仿照以上推理计算出1+3+32+33+…+32016的值是(  )
A.32017-1B.32018-1C.$\frac{{3}^{2017}-1}{4}$D.$\frac{{3}^{2017}-1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.抛物线L:y=ax2+bx+c(a≠0,a、b、c为常数)的顶点为原点,且经过点A(2$\sqrt{a}$,$\frac{1}{4}$),直线y=kx+1与y轴交于点F,与抛物线L交于B(x1,y1)、C(x2,y2)两点(其中x1<x2).有直线l:y=-1,垂足为M,连接AF.
(1)请直线写出抛物线L的解析式,并探究AM与AF的数量关系.
(2)求证:无论k为何值,直线l总是与以BC为直径的圆相切;
(3)将抛物线L和点F都向右平移$\frac{3}{2}$个单位后,得到抛物线L1和点F1,P是抛物线L1上的一动点,过点P作PK⊥l于点K,连接PA,求|PA-PK|的最大值,并求出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.阅读材料:
求1+2+22+23+…+22015的值.
解:设 S=1+2+22+23+…22015①,
①×2得:2S=2+22+23+24+…+22016②,
②-①得2S-S=22016-1,
即S=1+2+22+23+…+22015=22016-1.
请你仿照此法计算:
(1)1+2+22+23+24+25=63;
(2)求1+3+32+33+…+3n的值.(其中n为正整数)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算:-32+$\sqrt{18}$-(cos30°-1)0-(-$\frac{1}{2}$)-3+82×0.1252

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知二元一次方程2x+y=3
(1)若y的值是负数,求x的取值范围;
(2)已知关于x,y的方程组$\left\{\begin{array}{l}{x-y=a}\\{x+2y=b}\end{array}\right.$的解x,y满足二元一次方程2x+y=3,求a2+2ab+b2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.(1)计算:$\frac{a-1}{a}$÷$\frac{{a}^{2}-1}{{a}^{2}+2a}$-1;    
(2)解方程:$\frac{2}{x-1}$=$\frac{4}{{x}^{2}-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.化简:($\frac{{x}^{2}}{x-2}$-$\frac{4}{x-2}$)•$\frac{1}{{x}^{2}+2x}$.

查看答案和解析>>

同步练习册答案