【题目】如图①,在矩形OABC中,OA=4,OC=3,分别以OC、OA所在的直线为x轴、y轴,建立如图所示的坐标系,连接OB,反比例函数y=(x>0)的图象经过线段OB的中点D,并与矩形的两边交于点E和点F,直线l:y=kx+b经过点E和点F.
(1)写出中点D的坐标 ,并求出反比例函数的解析式;
(2)连接OE、OF,求△OEF的面积;
(3)如图②,将线段OB绕点O顺时针旋转一定角度,使得点B的对应点H恰好落在x轴的正半轴上,连接BH,作OM⊥BH,点N为线段OM上的一个动点,求HN+ON的最小值.
【答案】(1)D(,2),y=
;(2)
;(3)4.
【解析】
(1)首先确定点B坐标,再根据中点坐标公式求出点D的坐标即可解决问题.
(2)求出点E,F的坐标,再根据S△OEF=S矩形ABCO﹣S△AOE﹣S△OCF﹣S△EFB计算即可.
(3)如图②中,作NJ⊥BD于J.HK⊥BD于K.解直角三角形首先证明:sin∠JOD=,推出NJ=ONsin∠NOD=
ON,推出NH+
ON=NH+NJ,根据垂线段最短可知,当J,N,H共线,且与HK重合时,HN+
ON的值最小,最小值=HK的长,由此即可解决问题.
(1)在矩形ABCO中,∵OA=BC=4,OC=AB=3,
∴B(3,4).
∵OD=DB,
∴D(,2).
∵y=经过D(
,2),
∴k=3,
∴反比例函数的解析式为y=.
(2)如图①中,连接OE,OF.
由题意E(,4),F(3,1),
∴S△OEF=S矩形ABCO﹣S△AOE﹣S△OCF﹣S△EFB=12﹣×4×
﹣
×3×1﹣
×3×(3﹣
)=
.
(3)如图②中,作NJ⊥BD于J.HK⊥BD于K.
由题意OB=OH=5,
∴CH=OH﹣OC=5﹣3=2,
∴BH==2
,
∴sin∠CBH==
.
∵OM⊥BH,
∴∠OMH=∠BCH=90°.
∵∠MOH+∠OHM=90°,∠CBH+∠CHB=90°,
∴∠MOH=∠CBH.
∵OB=OH,OM⊥BH,
∴∠MOB=∠MOH=∠CBH,
∴sin∠JOD=,
∴NJ=ONsin∠NOD=ON,
∴NH+ON=NH+NJ,
根据垂线段最短可知,当J,N,H共线,且与HK重合时,HN+ON的值最小,最小值=HK的长.
∵OB=OH,BC⊥OH,HK⊥OB,
∴HK=BC=4,
∴HN+ON是最小值为4.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠A=30°,∠ACB=90°,BC=2,D是AB上的动点,将线段CD绕点C逆时针旋转90°,得到线段CE,连接BE,则BE的最小值是( )
A.-1B.
C.
D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了丰富居民的文化生活.某社区开展跳舞、绘画、游泳、唱歌等活动来让居民娱乐.为了解居民对跳舞、绘画、游泳、唱歌这四种活动(以下分别用,
,
,
表示这四种不同活动)的喜爱情况,在“五一”劳动节期间对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅统计图.请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将不完整的条形图补充完整;
(3)若居民区有8000人,请估计爱唱歌的人数?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,
是
边上的一点,
是
的中点,过
点作
的平行线交
的延长线于点
,且
,连接
.
(1)求证:是
的中点;
(2)如果,试判断四边形
的形状,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】张琪和爸爸到英雄山广场运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,张琪继续前行5分钟后也原路返回,两人恰好同时到家张琪和爸爸在整个运动过程中离家的路点y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示.求张琪开始返回时与爸爸相距______米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片的正面上,然后将这四张卡片背面朝上洗匀后放在桌面上.
(1)小明从中随机抽取一张卡片是足球社团B的概率是 .
(2)小明先从中随机抽取一张卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一张卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一张是科技社团D的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】线段AB、CD在平面直角坐标系中位置如图所示,O为坐标原点.若线段AB上一点P的坐标为(a、b),则直线OP与线段CD的交点坐标为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正比例函数和反比例函数的图像都经过点,且
为双曲线上的一点,
为坐标平面上一动点,
垂直于
轴,
垂直于
轴,垂足分别是
、
.
(1)写出正比例函数和反比例函数的关系式.
(2)当点在直线
上运动时,直线
上是否存在这样的点
,使得
与
的面积相等?如果存在,请求出点的坐标;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com