精英家教网 > 初中数学 > 题目详情
已知抛物线过点A(-1,0),B(0,6),对称轴为直线x=1
(1)求抛物线的解析式;
(2)画出抛物线的草图;
(3)根据图象回答:当x取何值时,y>0.
分析:(1)根据对称轴为x=1设抛物线解析式为y=a(x-1)2+k,将A与B坐标代入求出a与k的值,即可确定出抛物线解析式;
(2)在平面直角坐标系中做出抛物线的草图,如图所示;
(3)利用抛物线图象找出满足题意x的范围即可.
解答:解:(1)设二次函数的解析式为:y=a(x-1)2+k,
∵抛物线过点A(-1,0),B(0,6),
∴a(-1-1)2+k=0,a+k=6,
解得:a=-2;k=6,
二次函数的解析式为:y=-2x2+4x+6;           
     
(2)如图所示;        
                               
(3)根据图象得:当-1<x<3时,y>0.
点评:此题考查了待定系数法求二次函数解析式,以及二次函数的图象,熟练掌握待定系数法是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线过点A(2,0),B(-1,0),与y轴交于点C,且OC=2.则这条抛物线的解析式为(  )
A、y=x2-x-2B、y=-x2+x+2C、y=x2-x-2或y=-x2+x+2D、y=-x2-x-2或y=x2+x+2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线过点A(0,6),B(2,0),C(7,
52
).
(1)求抛物线的解析式;
(2)若D是抛物线的顶点,E是抛物线的对称轴与直线AC的交点,F与E关于D对称,求证:∠CFE=∠AFE;
(3)在y轴上是否存在这样的点P,使△AFP与△FDC相似?若有请求出所有符和条件的点P的坐标;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线过点A(-2,-3),B(2,5)和C(0,-3)
(1)求这条抛物线的解析式;
(2)当x=
 
时,y有最
 
值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线过点A(-1,0)、B(3,0)、C(0,-3).
(1)求该抛物线的解析式及其顶点的坐标;
(2)若P是抛物线上C、B两点之间的一动点,请连接CP、BP,是否存在点P,使得四边形OBPC的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案