精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC是等边三角形,点D在AC上,点E在BC的延长线上,且BD=DE.

(1)若点D是AC的中点,如图1,求证:AD=CE.
(2)若点D不是AC的中点,如图2,试判断AD与CE的数量关系,并证明你的结论:(提示:过点D作DF∥BC,交AB于点F.)
(3)若点D在线段AC的延长线上,(2)中的结论是否仍成立?如果成立,给予证明;如果不成立,请说明理由.

【答案】
(1)证明:∵△ABC是等边三角形,

∴∠ABC=∠ACB=60°,AB=AC=BC,

∵D为AC中点,

∴∠DBC=30°,AD=DC,

∵BD=DE,

∴∠E=∠DBC=30°

∵∠ACB=∠E+∠CDE,

∴∠CDE=30°=∠E,

∴CD=CE,

∵AD=DC,

∴AD=CE;


(2)证明:成立,

如图2,过D作DF∥BC,交AB于F,

则∠ADF=∠ACB=60°,

∵∠A=60°,

∴△AFD是等边三角形,

∴AD=DF=AF,∠AFD=60°,

∴∠BFD=∠DCE=180°﹣60°=120°,

∵DF∥BC,

∴∠FDB=∠DBE=∠E,

在△BFD和△DCE中

∴△BFD≌△DCE,

∴CE=DF=AD,

即AD=CE.


(3)证明:(2)中的结论仍成立,

如图3,过点D作DP∥BC,交AB的延长线于点P,

∵△ABC是等边三角形,

∴△APD也是等边三角形,

∴AP=PD=AD,∠APD=∠ABC=∠ACB=∠PDC=60°,

∵DB=DE,

∴∠DBC=∠DEC,

∵DP∥BC,

∴∠PDB=∠CBD,

∴∠PDB=∠DEC,

在△BPD和△DCE中,

∴△BPD≌△DCE,

∴PD=CE,

∴AD=CE.


【解析】(1)求出∠E=∠CDE,推出CD=CE,根据等腰三角形性质求出AD=DC,即可得出答案;(2)过D作DF∥BC,交AB于F,证△BFD≌△DCE,推出DF=CE,证△ADF是等边三角形,推出AD=DF,即可得出答案.(3)(2)中的结论仍成立,如图3,过点D作DP∥BC,交AB的延长线于点P,证明△BPD≌△DCE,得到PD=CE,即可得到AD=CE.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图ABCAD平分BACDGBC且平分BCDEABEDFACF

1)求证BE=CF

2)如果AB=8AC=6AEBE的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李明到离家2.1千米的学校参加八年级联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即步行(匀速)回家,在家拿道具用了1分钟,然后立即骑自行车(匀速)返回学校,已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍。

1)李明步行的速度(单位:米/分)是多少?

2)李明能否在联欢会开始前赶到学校?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从﹣3,﹣2,﹣1,0,1,2这六个数字中随机抽取一个数,记为a,a的值即使得不等式组 无解,又在函数y= 的自变量取值范围内的概率为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】商场经营的某品牌童装,4月的销售额为20000元,为扩大销量,5月份商场对这种童装打9折销售,结果销量增加了50件,销售额增加了7000元.
(1)求该童装4月份的销售单价;
(2)若4月份销售这种童装获利8000元,6月全月商场进行“六一儿童节”促销活动.童装在4月售价的基础上一律打8折销售,若该童装的成本不变,则销量至少为多少件,才能保证6月的利润比4月的利润至少增长25%?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠AMD的度数是( )

A.75°
B.60°
C.54°
D.67.5°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校实施课程改革,为初三学生设置了A,B,C,D,E,F共六门不同的拓展性课程,现随机抽取若干学生进行了我最想选的一门课调查,并将调查结果绘制成如图统计图表(不完整)

选修课

A

B

C

D

E

F

人数

20

30

根据图标提供的信息,下列结论错误的是(

A. 这次被调查的学生人数为200 B. 扇形统计图中E部分扇形的圆心角为72°

C. 被调查的学生中最想选F的人数为35 D. 被调查的学生中最想选D的有55

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列语句:有一边对应相等的两个直角三角形全等;一般三角形具有的性质,直角三角形都具有;有两边相等的两直角三角形全等;两直角三角形的斜边为5cm,一条直角边都为3cm,则这两个直角三角形必全等.其中正确的有________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣kx+k﹣1=0.
(1)求证:此一元二次方程恒有实数根.
(2)无论k为何值,该方程有一根为定值,请求出此方程的定值根.

查看答案和解析>>

同步练习册答案