精英家教网 > 初中数学 > 题目详情
如图,已知∠AOB=80°,在射线OA、OB上分别取OA=OB1,连接AB1,在AB1、B1B上分别取点A1、B2,使A1 B1=B1 B2,连接A1B2…,按此规律下去,记∠A1 B1 B21,∠A2B2B32,…,∠AnBnBn+1n,则θ2=
155°
155°
;θ2013=
(22013-1)•180°+80°
22013
(22013-1)•180°+80°
22013
分析:设∠AOB1=θ,根据等腰三角形两底角相等用θ表示出∠AB1O,再根据邻补角的定义表示出θ1,同理表示出θ2,θ3,…,θn,然后把θ=80°,n=2,n=2013代入表达式计算即可得解.
解答:解:设∠AOB1=θ,
∵OA=OB1
∴∠AB1O=
1
2
(180°-θ),
∴θ1=180°-
1
2
(180°-θ)=
180°+θ
2

∵A1B1=B1B2
∴∠A1B2B1=
1
2
(180°-
180°+θ
2
)=
180°-θ
4

∴θ2=180°-∠A1B2B1=180°-
180°-θ
4
=
3×180°+θ
4

同理可得:θ3=
7×180°+θ
8

…,
θn=
(2n-1)•180°+θ
2n

∵∠AOB=θ=80°,
∴n=2时,θ2=
3×180°+80°
4
=155°,
n=2013时,θ2013=
(22013-1)•180°+80°
22013

故答案为:155°;
(22013-1)•180°+80°
22013
点评:本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,邻补角的和等于180°,得到第n个角的表达式是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、(1)如图,已知∠AOB和C、D两点,用直尺和圆规作一点P,使PC=PD,且P到OA、OB两边距离相等.

(2)用三角尺作图在如图的方格纸中,
①作△ABC关于直线l1对称的△A1B1C1;再作△A1B1C1关于直线l2对称的△A2B2C2;再作△A2B2C2关于直线l3对称的△A3B3C3
②△ABC与△A3B3C3成轴对称吗?如果成,请画出对称轴;如果不成,把△A3B3C3怎样平移可以与△ABC成轴对称?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知∠AOB是直角,∠AOC是锐角,ON平分∠AOC,OM平分∠BOC,则∠MON是(  )精英家教网
A、45°
B、45°+
1
2
∠AOC
C、60°-
1
2
∠AOC
D、不能计算

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.
(1)求∠EOF的度数;
(2)若∠AOC=x°,∠EOF=y°.则请用x的代数式来表示y;
(3)如果∠AOC+∠EOF=156°,则∠EOF是多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

尺规作图:
如图,已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB(不用写作法,保留作图痕迹).并证明你所作图的正确性.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知∠AOB=x(0°<x<180°),OC平分∠AOB,点N为OB上一个定点.通过画图可以知道:当∠AOB=45°时,在射线OC上存在点P,使△ONP成为等腰三角形,且符合条件的点有三个,即P1(顶点为P2),P2(顶点为0),P3(顶点为N).
试问:当∠AOB分别为锐角、直角、钝角时,在射线OC上使△ONP成为等腰三角形的点P是否仍然存在三个?请分别画出简图并加以说明.

查看答案和解析>>

同步练习册答案