精英家教网 > 初中数学 > 题目详情
9.如图,直线l1∥l2∥l3,等边△ABC的顶点B、C分别在直线l2、l3上,若边BC与直线l3的夹角∠1=25°,则边AB与直线l1的夹角∠2=35°.

分析 先根据∠1=25°得出∠3的度数,再由△ABC是等边三角形得出∠4的度数,根据平行线的性质即可得出结论.

解答 解:∵直线l1∥l2∥l3,∠1=25°,
∴∠1=∠3=25°.
∵△ABC是等边三角形,
∴∠ABC=60°,
∴∠4=60°-25°=35°,
∴∠2=∠4=35°.
故答案为:35°.

点评 本题考查的是平行线的性质,等边三角形的性质,用到的知识点为:两直线平行,内错角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

15.关于x的一元二次方程(m-$\sqrt{3}$)x2+x+2m2-6=0的一个根为0,则m的值为-$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在2014年某市初中生毕业体育测试时,一名学生推铅球,已知铅球所经过的路线为抛物线的一部分,建立如图所示的坐标系,由此回答:该同学的成绩是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.在直角坐标系中,线段AB∥x轴,且AB=3,若A(2,m),B(n,1),则m+n=6或0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在A、B两处之间要修一条笔直的公路,从A地测得公路走向是北偏东46°,公司要求A、B两地同时开工,并保证若干天后公路准确接通.
(1)B地修公路的走向应该是南偏西46°;
(2)若公路AB长12千米,另一条公路BC长6千米,且BC的走向是北偏西44°,试求A到公路BC的距离?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.在计算l+4+7+10+13+16+19+22+25+28时,我们发现,从第一个数开始,后面的每个数与它的前面一个数的差都是一个相等的常数,具有这种规律的一列数,除了直接相加外,我们还可以用下列公式来求和S,$S=\frac{{n({{a_1}+{a_n}})}}{2}$(其中n表示数的个数,a1表示第一个数,an表示最后一个数),所以1+4+7+10+13+16+19+22+25+28=$\frac{{10×({1+28})}}{2}$=145.
用上面的知识解答下面问题:
某公司对外招商承包一分公司,符合条件的两企业A、B分别拟定上缴利润方案如下:
A:每年结算一次上缴利润,第一年上缴1.5万元,以后每年比前一年增加l万元;
B:每半年结算一次上缴利润,第一个半年上缴0.3万元,以后每半年比前半年增加0.3万元;
(1)如果承包期限2年,则A企业上缴利润的总金额为4万元,B企业上缴利润的总金额为3万元.
(2)如果承包期限为n年,试用n的代数式分别表示两企业上缴利润的总金额.
(3)承包期限n=20时,通过计算说明哪个企业上缴利润的总金额比较多?多多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球运行时,设乒乓球与端点A的水平距离为x(米),与桌面的高度为y(米),运行时间为t(秒),经多次测试后,得到如下部分数据:
t(秒)00.160.20.40.60.640.8
x(米)00.40.511.51.62
y(米)0.250.3780.40.450.40.3780.25
(1)当t为何值时,乒乓球达到最大高度?
(2)乒乓球落在桌面时,与端点A的水平距离是多少?
(3)乒乓球落在桌面上弹起后,y与x满足y=a(x-3)2+k.
①用含a的代数式表示k;
②球网高度为0.14米,球桌长(1.4×2)米.若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.将△ABC纸片沿DE折叠,其中∠B=∠C.
(1)如图1,点C落在BC边上的点F处,AB与DF是否平行?请说明理由;
(2)如图2,点C落在四边形ABCD内部的点G处,探索∠B与∠1+∠2之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.计算:$\frac{4xy}{{x}^{2}-{y}^{2}}$+$\frac{x-y}{x+y}$=$\frac{x+y}{x-y}$.

查看答案和解析>>

同步练习册答案