分析 连接OD、OE,先证明△AOD、△BOE是等边三角形,得出∠AOD=∠BOE=60°,求出∠DOE=60°,再由弧长公式即可得出答案.
解答 解:连接OD、OE,如图所示:
∵△ABC是等边三角形,
∴∠A=∠B=∠C=60°,
∵OA=OD,OB=OE,
∴△AOD、△BOE是等边三角形,
∴∠AOD=∠BOE=60°,
∴∠DOE=60°,
∵OA=$\frac{1}{2}$AB=3,
∴$\widehat{DE}$的长=$\frac{60π×3}{180}$=π;
故答案为:π.
点评 本题考查了等边三角形的性质与判定、弧长公式;熟练掌握弧长公式,证明三角形是等边三角形是解决问题的关键.
科目:初中数学 来源: 题型:选择题
A. | 0.5×10-8s | B. | 5×10-9s | C. | 5×10-8s | D. | 0.5×10-9s |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 12cm | B. | 8cm | C. | 20cm | D. | 18cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
节目 | 人数(名) | 百分比 |
最强大脑 | 5 | 10% |
朗读者 | 15 | b% |
中国诗词大会 | a | 40% |
出彩中国人 | 10 | 20% |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 3 | C. | $-\frac{1}{4}$ | D. | $\frac{7}{4}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com