精英家教网 > 初中数学 > 题目详情
如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上.直线CB的表达式为y=-
4
3
x+
16
3
,点A、D的坐标分别为(-4,0),(0,4).动点P自A点出发,在AB上匀速运行.动点Q自点B出发,在折线BCD上匀速运行,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P运动t(秒)时,△OPQ的面积为s(不能构成△OPQ的动点除外).
(1)求出点B、C的坐标;
(2)求s随t变化的函数关系式;
(3)当t为何值时s有最大值?并求出最大值.
精英家教网
分析:(1)把y=4代入y=-
4
3
x+
16
3
,求得x的值,则可得点C的坐标,把y=0代入y=-
4
3
x+
16
3
,求得x的值,即可得点B的坐标;
(2)作CM⊥AB于M,则可求得CM与BM的值,求得∠ABC的正弦值,然后分别从0<t<4时,当4<t≤5时与当5<t≤6时去分析求解即可求得答案;
(3)在(2)的情况下s的最大值,然后比较即可求得答案.
解答:解:(1)把y=4代入y=-
4
3
x+
16
3
,得x=1.精英家教网
∴C点的坐标为(1,4).
当y=0时,-
4
3
x+
16
3
=0,
∴x=4.
∴点B坐标为(4,0).

(2)作CM⊥AB于M,则CM=4,BM=3.
∴BC=
CM2+BM2
=
32+42
=5.
∴sin∠ABC=
CM
BC
=
4
5

①0<t<4时,作QN⊥OB于N,
则QN=BQ•sin∠ABC=
4
5
t.
∴S=
1
2
OP•QN=
1
2
(4-t)×
4
5
t=-
2
5
t2+
8
5
t(0<t<4).

②当4<t≤5时,(如图1),精英家教网
连接QO,QP,作QN⊥OB于N.
同理可得QN=
4
5
t.
∴S=
1
2
OP•QN=
1
2
×(t-4)×
4
5
t=
2
5
t2-
8
5
t(4<t≤5).

③当5<t≤6时,(如图2),
连接QO,QP.
S=
1
2
×OP×OD=
1
2
(t-4)×4=2t-8(5<t≤6).

(3)①在0<t<4时,
当t=-
8
5
2×(-
2
5
)
=2时,
S最大=
-(
8
5
)
2
4×(-
2
5
)
=
8
5

②在4<t≤5时,对于抛物线S=
2
5
t2-
8
5
t,当t=-
-
8
5
2
5
=2时,
S最小=
2
5
×22-
8
5
×2=-
8
5

∴抛物线S=
2
5
t2-
8
5
t的顶点为(2,-
8
5
).
∴在4<t≤5时,S随t的增大而增大.
∴当t=5时,S最大=
2
5
×52-
8
5
×5=2.

③在5<t≤6时,
在S=2t-8中,
∵k=2>0,
∴S随t的增大而增大.
∴当t=6时,S最大=2×6-8=4.
∴综合三种情况,当t=6时,S取得最大值,最大值是4.
点评:此题考查了点与函数的关系,三角形面积的求解方法以及利用二次函数的知识求函数的最大值的问题.此题综合性很强,难度较大,解题时要注意分类讨论思想,方程思想与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑦的直角顶点的坐标为
(24,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,点P的坐标为(3,4),将OP绕原点O逆时针旋转90°得到线段OP′.
(1)在图中画出线段OP′;
(2)求P′的坐标和
PP′
的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,O为原点.反比例函数y=
6
x
的图象经过第一象限的点A,点A的纵坐标是横坐标的
3
2
倍.
(1)求点A的坐标;
(2)如果经过点A的一次函数图象与x轴的负半轴交于点B,AC⊥x轴于点C,若△ABC的面积为9,求这个一次函数的解析式.
(3)点D在反比例函数y=
6
x
的图象上,且点D在直线AC的右侧,作DE⊥x轴于点E,当△ABC与△CDE相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-4,6),C(0,2).画出△ABC的两个位似图形△A1B1C1,△A2B2C2,同时满足下列两个条件:
(1)以原点O为位似中心;
(2)△A1B1C1,△A2B2C2与△ABC的面积比都是1:4.(作出图形,保留痕迹,标上相应字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,已知点A(-4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面积是
6
6

(2)三角形(2013)的直角顶点的坐标是
(8052,0)
(8052,0)

查看答案和解析>>

同步练习册答案