精英家教网 > 初中数学 > 题目详情

【题目】光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其它天气平均每天可发电5度,已知某月(按30天计)共发电550度.

(1)求这个月晴天的天数.
(2)已知该家庭每月平均用电量为150度,若按每月发电550度计,至少需要几年才能收回成本(不计其它费用,结果取整数).

【答案】
(1)解:设这个月有x天晴天,由题意得

30x+5(30﹣x)=550,

解得x=16,

故这个月有16个晴天.


(2)解:需要y年才可以收回成本,由题意得

(550﹣150)(0.52+0.45)12y≥40000,

解得y≥8.6,

∵y是整数,

∴至少需要9年才能收回成本.


【解析】(1)设这个月有x天晴天,根据总电量550度列出方程即可解决问题.(2)需要y年才可以收回成本,根据电费≥40000,列出不等式即可解决问题.本题考查一元一次不等式、一元一次方程等知识,熟练应用方程或不等式解决实际问题是解题的关键,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“今天你光盘了吗?”这是国家倡导“厉行节约,反对浪费”以来的时尚流行语.某校团委随机抽取了部分学生,对他们进行了关于“光盘行动”所持态度的调查,并根据调查收集的数据绘制了如下两幅不完整的统计图:
根据上述信息,解答下列问题:
(1)抽取的学生人数为
(2)将两幅统计图补充完整;
(3)请你估计该校1200名学生中对“光盘行动”持赞成态度的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y1=ax+b与双曲线y2= 交于A、B两点,与x轴交于点C,点A的纵坐标为6,点B的坐标为(﹣3,﹣2).
(1)求直线和双曲线的解析式;
(2)求点C的坐标,并结合图象直接写出y1<0时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是(
A.小涛家离报亭的距离是900m
B.小涛从家去报亭的平均速度是60m/min
C.小涛从报亭返回家中的平均速度是80m/min
D.小涛在报亭看报用了15min

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:AB是⊙O的弦,点C是 的中点,连接OB、OC,OC交AB于点D.
(1)如图1,求证:AD=BD;
(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是 上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;
(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO= ,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在直角坐标系xoy中,直线l:y=kx+b交x轴,y轴于点E,F,点B的坐标是(2,2),过点B分别作x轴、y轴的垂线,垂足为A、C,点D是线段CO上的动点,以BD为对称轴,作与△BCD或轴对称的△BC′D.

(1)当∠CBD=15°时,求点C′的坐标.
(2)当图1中的直线l经过点A,且k=﹣ 时(如图2),求点D由C到O的运动过程中,线段BC′扫过的图形与△OAF重叠部分的面积.
(3)当图1中的直线l经过点D,C′时(如图3),以DE为对称轴,作于△DOE或轴对称的△DO′E,连结O′C,O′O,问是否存在点D,使得△DO′E与△CO′O相似?若存在,求出k、b的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某生物科技发展公司投资2000万元,研制出一种绿色保健食品.已知该产品的成本为40元/件,试销时,售价不低于成本价,又不高于180元/件.经市场调查知,年销售量y(万件)与销售单价x(元/件)的关系满足下表所示的规律.

销售单价x(元/件)

60

65

70

80

85

年销售量y(万件)

140

135

130

120

115


(1)y与x之间的函数关系式及自变量x的取值范围。
(2)经测算:年销售量不低于90万件时,每件产品成本降低2元,设销售该产品年获利润为W(万元)(W=年销售额﹣成本﹣投资),求出年销售量低于90万件和不低于90万件时,W与x之间的函数关系式;
(3)在(2)的条件下,当销售单位定为多少时,公司销售这种产品年获利润最大?最大利润为多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在小正方形的边长均为l的方格纸中,有线段AB,BC.点A,B,C均在小正方形的顶点上.
(1)在图1中画出四边形ABCD,四边形ABCD是轴对称图形,点D在小正方形的项点上:

(2)在图2中画四边形ABCE,四边形ABCE不是轴对称图形,点E在小正方形的项点上,∠AEC=90°,EC>EA;直接写出四边形ABCE的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED= AB中,一定正确的是(
A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

同步练习册答案