【题目】如图,AB是⊙O的直径,弦CD⊥AB于点E,G是上一动点,AG,DC的延长线交于点F,连接AC,AD,GC,GD.
(1)求证:∠FGC=∠AGD;
(2)若AD=6.
①当AC⊥DG,CG=2时,求sin∠ADG;
②当四边形ADCG面积最大时,求CF的长.
【答案】(1)证明见解析;(2)①sin∠ADG=;②CF=6.
【解析】
(1)由垂径定理可得CE=DE,CD⊥AB,由等腰三角形的性质和圆内接四边形的性质可得∠FGC=∠ADC=∠ACD=∠AGD;
(2)①如图,设AC与GD交于点M,证△GMC∽△AMD,设CM=x,则DM=3x,在Rt△AMD中,通过勾股定理求出x的值,即可求出AM的长,可求出sin∠ADG的值;
②S四边形ADCG=S△ADC+S△ACG,因为点G是上一动点,所以当点G在的中点时,△ACG的的底边AC上的高最大,此时△ACG的面积最大,四边形ADCG的面积也最大,分别证∠GAC=∠GCA,∠F=∠GCA,推出∠F=∠GAC,即可得出FC=AC=6.
证明:(1)∵AB是⊙O的直径,弦CD⊥AB,
∴CE=DE,CD⊥AB,
∴AC=AD,
∴∠ADC=∠ACD,
∵四边形ADCG是圆内接四边形,
∴∠ADC=∠FGC,
∵∠AGD=∠ACD,
∴∠FGC=∠ADC=∠ACD=∠AGD,
∴∠FGC=∠AGD;
(2)①如图,设AC与GD交于点M,
∵,
∴∠GCM=∠ADM,
又∵∠GMC=∠AMD,
∴△GMC∽△AMD,
∴===,
设CM=x,则DM=3x,
由(1)知,AC=AD,
∴AC=6,AM=6﹣x,
在Rt△AMD中,
AM2+DM2=AD2,
∴(6﹣x)2+(3x)2=62,
解得,x1=0(舍去),x2=,
∴AM=6﹣=,
∴sin∠ADG===;
②S四边形ADCG=S△ADC+S△ACG,
∵点G是上一动点,
∴当点G在的中点时,△ACG的底边AC上的高最大,此时△ACG的面积最大,四边形ADCG的面积也最大,∴GA=GC,
∴∠GAC=∠GCA,
∵∠GCD=∠F+∠FGC,
由(1)知,∠FGC=∠ACD,且∠GCD=∠ACD+∠GCA,
∴∠F=∠GCA,
∴∠F=∠GAC,
∴FC=AC=6.
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度沿AC向点C运动,到达点C停止;同时点Q从点A出发,以2cm/s的速度沿AB﹣BC向点C运动,到达点C停止,设△APQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于点B、C;抛物线y=﹣x2+bx+c经过B、C两点,并与x轴交于另一点A.
(1)求该抛物线所对应的函数关系式;
(2)设P(x,y)是(1)所得抛物线上的一个动点,过点P作直线l⊥x轴于点M,交直线BC于点N.
①若点P在第一象限内.试问:线段PN的长度是否存在最大值?若存在,求出它的最大值及此时x的值;若不存在,请说明理由;
②求以BC为底边的等腰△BPC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,直径DE⊥AB于点F,交BC于点 M,DE的延长线与AC的延长线交于点N,连接AM.
(1)求证:AM=BM;
(2)若AM⊥BM,DE=8,∠N=15°,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为1,点M是BC边上的动点(不与B,C重合),点N是AM的中点,过点N作EF⊥AM,分别交AB,BD,CD于点E,K,F,设BM=x.
(1)AE的长为______(用含x的代数式表示);
(2)设EK=2KF,则的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,以点M(0, )为圆心,以 长为半径作⊙M交x轴于A,B两点,交y轴于C,D两点,连接AM并延长交⊙M于P点,连接PC交x轴于E.
(1)求出CP所在直线的解析式;
(2)连接AC,请求△ACP的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连结OB1、OB2、OB3,那么图中阴影部分的面积之和为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,.P是底边上的一个动点(P与B、C不重合),以P为圆心,为半径的与射线交于点D,射线交射线于点E.
(1)若点E在线段的延长线上,设,求y关于x的函数关系式,并写出x的取值范围.
(2)连接,若,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+1与反比例函数y=的图象相交于点A、B,过点A作AC⊥x轴,垂足为点C(﹣2,0),连接AC、BC.
(1)求反比例函数的解析式;
(2)求S△ABC;
(3)利用函数图象直接写出关于x的不等式﹣x+1<的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com