分析 连接BD,根据三角形的中位线定理得到EH∥BD,EH=$\frac{1}{2}$BD,FG∥BD,FG═$\frac{1}{2}$BD,推出,EH∥FG,EH=FG,根据一组对边平行且相等的四边形是平行四边形得出四边形EFGH是平行四边形;
解答 解:(1)四边形EFGH的形状是平行四边形.
(2)证明:
如图,连结BD.
∵E、H分别是AB、AD中点,
∴EH∥BD,EH=$\frac{1}{2}$BD,
同理FG∥BD,FG=$\frac{1}{2}$BD,
∴EH∥FG,EH=FG,
∴四边形EFGH是平行四边形;
点评 本题主要考查对三角形的中位线定理,平行四边形的判定,解题的关键是正确的构造三角形病正确的运用中位线定理,难度不大.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com