精英家教网 > 初中数学 > 题目详情

【题目】某商店分两次购进两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:

购进数量(件)

购进所需费用

(元)

A

B

第一次

20

50

4100

第二次

30

40

3700

1)求两种商品每件的进价分别是多少元?

2)商场决定商品以每件50元出售,商品以每件元出售.为满足市场需求,需购进两种商品共件,且商品的数量不少于商品数量的倍,请你求出获利最大的进货方案,并确定最大利润.

【答案】1A商品每件进价为30元,B商品每件进价为70元;(2)当A商品购进800件,B商品购进200件时利润最大,最大利润为22000

【解析】

1)设AB两种商品每件的进价分别是x元,y元,根据题意可列二元一次方程组,解得可求AB两种商品每件的进价.
2)设购进A种商品m件,获得的利润为w元,则购进B种商品(1000-m)件,由A种商品的数量不少于B种商品数量的4倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,根据利润=A商品利润+B商品利润列出wm之间的函数关系式,再根据一次函数的性质即可解决最值问题.

1)设A商品每件进价为x元,B商品每件进价为y元,根据题意得:

解得:

答:A商品每件进价为30元,B商品每件进价为70

2)设A商品购进m件,则B商品购进(1000-m).设获得利润为W.

m增大时,W减少

m=800时,W取最大值

最大利润为:(元)

A商品购进800件,B商品购进200件时利润最大,最大利润为22000.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(教材呈现)

下图是华师版九年级上册数学教材第79页的部分内容.

请根据教材内容,结合图,写出完整的解题过程.

(结论应用)

1)在图中,若AB=2,∠AOD=120°,则四边形EFGH的面积为______

2)如图,在菱形ABCD中,∠BAD=120°,O是其内任意一点,连接O与菱形ABCD各顶点,四边形EFGH的顶点EFGH分别在AOBOCODO上,EO=2AEEFABGH,且EF=GH,若△EFO与△GHO的面积和为,则菱形ABCD的周长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系xOy中,A21),B3,﹣1),C(﹣21),D02).已知线段AB绕着点P逆时针旋转得到线段CD,其中C是点A的对应点.

1)用尺规作图的方法确定旋转中心P,并直接写出点P的坐标;(要求保留作图痕迹,不写作法)

2)若以P为圆心的圆与直线CD相切,求⊙P的半径

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线与直线交于AB两点.A的横坐标为-3,点By轴上,点Py轴左侧抛物线上的一动点,横坐标为m,过点PPCx轴于C,交直线ABD.

1)求抛物线的解析式;

2)当m为何值时,

3)是否存在点P,使PAD是直角三角形,若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y=(x>0)的图象与直线y=x交于点M,∠AMB=90°,其两边分别与两坐标轴的正半轴交于点A,B,四边形OAMB的面积为6.

(1)求k的值;

(2)点P在反比例函数y=(x>0)的图象上,若点P的横坐标为3,∠EPF=90°,其两边分别与x轴的正半轴,直线y=x交于点E,F,问是否存在点E,使得PE=PF?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过点,交y 轴于点C

1)求抛物线的顶点坐标.

2)点为抛物线上一点,是否存在点使,若存在请直接给出点坐标;若不存在请说明理由.

3)将直线绕点顺时针旋转,与抛物线交于另一点,求直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD和矩形EFGO在平面直角坐标系中,点BF的坐标分别为(4,4)(2,1).若矩形ABCD和矩形EFGO是位似图形,点P(PGC)是位似中心,则点P的坐标为(  )

A. (0,3)

B. (0,2.5)

C. (0,2)

D. (0,1.5)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,为坐标原点,的边垂直于轴,垂足为点,反比例函数的图象经过的中点,且与相交于点

1)求反比例函数的解析式;

2)求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点B02),A(﹣6,﹣1)在反比例函数的图象上,作射线AB,再将射线AB绕点A逆时针旋转45°后,交反比例函数图象于点C,则点C的坐标为_____

查看答案和解析>>

同步练习册答案