精英家教网 > 初中数学 > 题目详情
如图,D是BC上一点,AB=AD,BC=DE.
(1)在条件:①∠C=∠E,②AC=AE中,选择②可得
△ABC≌△ADE
△ABC≌△ADE

(2)在(1)的条件下,求证:∠CDE=∠BAD.
分析:(1)根据SSS推出三角形全等即可;
(2)根据全等得出∠BAC=∠DAE,求出∠BAD=∠EAC,根据全等三角形性质得出∠E=∠C,根据三角形内角和定理求出∠EAC=∠CDE,即可得出答案.
解答:证明:(1)∵在△ABC和△ADE中
BC=DE
AB=AD
AC=AE

∴△ABC≌△ADE,
故答案为:△ABC≌△ADE.

(2)∵△ABC≌△ADE,
∴∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC,
∴∠BAD=∠EAC,
∵△ABC≌△ADE,
∴∠E=∠C,
∵∠AOE=∠DOC,∠E+∠AOE+∠EAC=180°,∠C+∠DOC+∠CDE=180°,
∴∠CDE=∠EAC,
∵∠BAD=∠EAC,
∴∠CDE=∠BAD.
点评:本题考查了全等三角形的性质和判定,三角形面积和定理的应用,主要考查学生的推理能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,D是BC上一点,AD平分∠BAC,AB=3,AC=2,若S△ABD=a,则S△ADC=
 
.(用a的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图,D是BC上一点,DE平分∠ADB交AB于E,DF⊥DE交AC于F,连接EF.
(1)试说明:DF平分∠ADC;
(2)若∠BDE=50°30′,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,D是BC上一点,E是AB上一点,AD、CE交于点P,且AE:EB=3:2,CP:CE=5:6,那么DB:CD=
1:3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,E是BC上一点,AB⊥BC,且AB=BC,过B点作BD⊥AE于O点,CD∥AE,在以下两个结论中,选择正确的一个结论,并加以证明.
(1)△ABE≌△BDC           (2)△ABO≌△BCD
解:我选择
(1)
(1)

证明如下:

查看答案和解析>>

同步练习册答案