精英家教网 > 初中数学 > 题目详情
9、如图,⊙O是△ABC的边BC外的旁切圆,D、E、F分别为⊙O与BC、CA、AB的切点.若OD与EF相交于K,求证:AK平分BC.
分析:过点K作BC的平行线分别交直线AB、AC于Q、P两点,连OP、OQ、OE、OF,由平行线的性质可知OK⊥PQ,O、K、F、Q四点共圆,同理可得O、K、P、E四点共圆,由全等三角形的判定定理可知Rt△OFQ≌Rt△OEP,故可得出结论.
解答:解:证明:如图,过点K作BC的平行线分别交直线AB、AC于Q、P两点,连OP、OQ、OE、OF.
由OD⊥BC,可知OK⊥PQ.
由OF⊥AB,可知O、K、F、Q四点共圆,有∠FOQ=∠FKQ.
由OE⊥AC,可知O、K、P、E四点共圆,有∠EOP=∠EKP.
显然,∠FKQ=∠EKP,可知∠FOQ=∠EOP.
由OF=OE,可知Rt△OFQ≌Rt△OEP,则OQ=OP.
于是,OK为PQ的中垂线,故QK=KP.
所以,AK平分BC.
点评:本题考查的是四点共圆的条件,解答此类题目时应注意适时添加平行线,让平行线在平面几何证题中发挥应有的作用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,⊙O是△ABC的外接圆,OD⊥AB于点D、交⊙O于点E,∠C=60°,如果⊙O的半径为2,那么OD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,AD是△ABC的高,且AD平分∠BAC,请指出∠B与∠C的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔东南州)如图,⊙O是△ABC的外接圆,圆心O在AB上,过点B作⊙O的切线交AC的延长线于点D.
(1)求证:△ABC∽△BDC.
(2)若AC=8,BC=6,求△BDC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE的长.

查看答案和解析>>

同步练习册答案