分析 (1)根据平行线的性质以及角平分线的性质得出∠OEC=∠OCE,∠OFC=∠OCF,证出OE=OC=OF,∠ECF=90°,由勾股定理求出EF,即可得出答案;
(2)根据平行四边形的判定以及矩形的判定得出即可.
解答 (1)证明:∵EF交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
∴∠OCE=∠BCE,∠OCF=∠DCF,
∵MN∥BC,
∴∠OEC=∠BCE,∠OFC=∠DCF,
∴∠OEC=∠OCE,∠OFC=∠OCF,
∴OE=OC,OF=OC,
∴OE=OF;
∵∠OCE+∠BCE+∠OCF+∠DCF=180°,
∴∠ECF=90°,
在Rt△CEF中,由勾股定理得:EF=$\sqrt{C{E}^{2}+C{F}^{2}}$=10,
∴OC=OE=$\frac{1}{2}$EF=5;
(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:
连接AE、AF,如图所示:
当O为AC的中点时,AO=CO,
∵EO=FO,
∴四边形AECF是平行四边形,
∵∠ECF=90°,
∴平行四边形AECF是矩形.
点评 此题主要考查了矩形的判定、平行线的性质、等腰三角形的判定、勾股定理、平行四边形的判定和直角三角形的判定等知识,根据已知得出∠ECF=90°是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 50° | B. | 55° | C. | 60° | D. | 45° |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1.4 | B. | 1.1 | C. | 0.8 | D. | 0.5 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com