精英家教网 > 初中数学 > 题目详情
12.如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.
(1)若CE=8,CF=6,求OC的长;
(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.

分析 (1)根据平行线的性质以及角平分线的性质得出∠OEC=∠OCE,∠OFC=∠OCF,证出OE=OC=OF,∠ECF=90°,由勾股定理求出EF,即可得出答案;
(2)根据平行四边形的判定以及矩形的判定得出即可.

解答 (1)证明:∵EF交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
∴∠OCE=∠BCE,∠OCF=∠DCF,
∵MN∥BC,
∴∠OEC=∠BCE,∠OFC=∠DCF,
∴∠OEC=∠OCE,∠OFC=∠OCF,
∴OE=OC,OF=OC,
∴OE=OF;
∵∠OCE+∠BCE+∠OCF+∠DCF=180°,
∴∠ECF=90°,
在Rt△CEF中,由勾股定理得:EF=$\sqrt{C{E}^{2}+C{F}^{2}}$=10,
∴OC=OE=$\frac{1}{2}$EF=5;
(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:
连接AE、AF,如图所示:
当O为AC的中点时,AO=CO,
∵EO=FO,
∴四边形AECF是平行四边形,
∵∠ECF=90°,
∴平行四边形AECF是矩形.

点评 此题主要考查了矩形的判定、平行线的性质、等腰三角形的判定、勾股定理、平行四边形的判定和直角三角形的判定等知识,根据已知得出∠ECF=90°是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.有四张形状、大小和质地相同的卡片A、B、C、D,正面分别写有一个正多边形,把四张卡片洗匀后正面朝下放在桌面上,从中随机抽取一张(不放回),接着再随机抽取一张.

(1)请你用画树形图或列表的方法列举出可能出现的所有结果(用A、B、C、D表示);
(2)如果在(1)中各种结果被选中的可能性相同,求两次抽取的正多边形对称轴条数之和为奇数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC的度数为(  )
A.50°B.55°C.60°D.45°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.若关于x的一元二次方程(k+1)x2+2(k+1)x+k-2=0有实数根,则k的取值范围在数轴上表示正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,四边形ABCD中,AD∥BC,CM是∠BCD的平分线,且CM⊥AB,M为垂足,AM=$\frac{1}{3}$AB.若四边形ABCD的面积为$\frac{15}{7}$,则四边形AMCD的面积是1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多17个.
(1)求每辆大客车和每辆小客车的乘客座位数;
(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案.在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.(1)解不等式组:$\left\{\begin{array}{l}{3x+1≤2}\\{\frac{2x-1}{3}>x}\end{array}\right.$
(2)如图,已知正五边形ABCDE,AF∥CD交DB的延长线于点F,交DE的延长线于点G.求∠G的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:
将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是(  )
A.1.4B.1.1C.0.8D.0.5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,正方形ABCD的边长为6,把一个含30°的直角三角形BEF放在正方形上,其中∠FBE=30°,∠BEF=90°,BE=BC,绕B点转动△FBE,在旋转过程中,
(1)如图1,当F点落在边AD上时,求∠EDC的度数;
(2)如图2,设EF与边AD交于点M,FE的延长线交DC于G,当AM=3时,求EG的长;
(3)如图3,设EF与边AD交于点N,当tan∠ECD=$\frac{1}{2}$时,求S△NED

查看答案和解析>>

同步练习册答案