精英家教网 > 初中数学 > 题目详情
3.列式计算:
(1)已知两个数的商是-5,被除数是-215,求除数;
(2)已知|x|=3,|y|=13,且xy<0,求$\frac{y}{x}$的值.

分析 (1)根据被除数除以商得到除数即可;
(2)利用绝对值的代数意义确定出x与y的值,即可求出原式的值.

解答 解:(1)根据题意得:-215÷(-5)=43;
(2)∵|x|=3,|y|=13,且xy<0,
∴x=3,y=-13或x=-3,y=13,
则原式=-$\frac{13}{3}$.

点评 此题考查了有理数的除法,绝对值,以及有理数的乘法,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.化简:
(1)3(2x-7y)-(4x-10y)         
(2)(2a2-ab)-2(3a2-2ab).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.求下列各数的立方根:
(1)8;
(2)-4$\frac{17}{27}$;
(3)-(-6)3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.△ABC的三边长为a、b、c,且a,b满足$\sqrt{a-5}$+b2-6b+9=0,则△ABC的周长取值范围是10<△ABC周长<16.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.作图(保留作图痕迹,不需写作法)并计算:
(1)请用直尺与圆规画出如图(弓形)所在圆的圆心O;
(2)若∠AOB=120°,圆的半径为2,试求出弧AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知abc>0,求$\frac{ab}{|ab|}$+$\frac{ac}{|ac|}$+$\frac{bc}{|bc|}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知:x=$\frac{1}{2+\sqrt{3}}$,y=$\frac{1}{2-\sqrt{3}}$.
(1)求2x2+2y2-xy的值.
(2)若x的整数部分是a,y的小数部分是b,求5a2+(x-b)2-y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.若x2=(-$\frac{4}{5}$)2,y3=(-2)3,|a|=|-2|,求代数式5x+4y-2a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.先阅读,后解答:
$\frac{\sqrt{3}}{\sqrt{3}-\sqrt{2}}$=$\frac{\sqrt{3}(\sqrt{3}+\sqrt{2})}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}$=$\frac{3+\sqrt{6}}{3-2}$=3+$\sqrt{6}$
像上述解题过程中,$\sqrt{3}$-$\sqrt{2}$与$\sqrt{3}$+$\sqrt{2}$相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,
(1)$\sqrt{3}$的有理化因式是$\sqrt{3}$; $\sqrt{5}$+2的有理化因式是$\sqrt{5}$-2.
(2)将下列式子进行分母有理化:
$\frac{2}{\sqrt{5}}$=$\frac{2\sqrt{5}}{5}$;$\frac{1}{3+\sqrt{6}}$=1-$\frac{\sqrt{6}}{3}$.
(3)已知a=$\frac{1}{2+\sqrt{3}}$,b=2-$\sqrt{3}$,比较a与b的大小关系.

查看答案和解析>>

同步练习册答案