【题目】已知菱形在平面直角坐标系的位置如图所示,
,
,
,点
是对角线
上的一个动点,
,当
周长最小时,点
的坐标为_____.
【答案】(3,2)
【解析】
点D关于AC的对称点是点B,连接EB,交AC于点P,再得出EB即为EP+DP最短,解答即可.
连接ED,如图,
∵点D关于AC的对称点是点B,
∴DP=BP,
∴EB即为EP+DP最短,
即此时△EPD周长最小,
连接BD交AC于M,
过M作MF⊥AB于F,
∵四边形ABCD是菱形,
∴AM=AC=
,AC⊥BD,
∴BM==
,
∴MF==2,
∴AF==4,
∵A(1,1),B(6,1),
∴AB∥x轴,
∴直线AB与x轴间的距离是1,
∴M点的纵坐标为2+1=3,
∴M(5,3),
∴直线AC的解析式为:,
∵E(0,3),B(6,1),
∴直线BE的解析式为:y=,
∴ ,
解得,,
∴点P的坐标为(3,2).
故答案为:(3,2)
科目:初中数学 来源: 题型:
【题目】如图,点A是反比例函数y=图象上一点,过点A作x轴的平行线交反比例函数y=﹣
的图象于点B,点C在x轴上,且S△ABC=
,则k=( )
A. 6B. ﹣6C. D. ﹣
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A在反比例函数y=(x>0)图象上,点B在反比例函数y=
(k>0,x>0)的图象上,AB∥x轴,BC∥y轴交x轴于点C,连结AC,交反比例函数y=
(x>0)图象于点D,若D为AC的中点,则k的值是( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在趣味运动会“定点投篮”项目中,我校七年级八个班的投篮成绩单位:个
分别为:24,20,19,20,22,23,20,
则这组数据中的众数和中位数分别是
A. 22个、20个 B. 22个、21个 C. 20个、21个 D. 20个、22个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线过点
,与
轴交于点
,
,交y轴于点
,顶点为
.
(1)求抛物线解析式;
(2)在第一象限内的抛物线上求点,使
,求点
的坐标;
(3)是第一象限内抛物线上一点,
是线段
上一点,点
在
点右侧,且满足
,当
为何值时,满足条件的点
只有一个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.
(1)证明:△ADF是等腰三角形;
(2)若∠B=60°,BD=4,AD=2,求EC的长,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0(A2+B2≠0)的距离公式为:d=,
例如,求点P(1,3)到直线4x+3y﹣3=0的距离.
解:由直线4x+3y﹣3=0知:A=4,B=3,C=﹣3
所以P(1,3)到直线4x+3y﹣3=0的距离为:d==2
根据以上材料,解决下列问题:
(1)求点P1(1,-1)到直线3x﹣4y﹣5=0的距离.
(2)已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;
(3)如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出△ABP面积的最大值和最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图抛物线y=ax2+bx+c的对称轴为直线x=1,且过点(3,0),下列结论:①abc>0;②a﹣b+c<0;③2a+b>0;④b2﹣4ac>0;正确的有( )个.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com