精英家教网 > 初中数学 > 题目详情
计算下列各题.
(1)sin230°+cos245°+
2
sin60°•tan45°;
(2)
cos230°+cos260°
tan60°•cot30°
+tan60°;
(3)tan2°tan4°•tan6°…tan88°.
分析:本题可根据特殊的三角函数值解出第(1)(2)题,再根据两个互余的三角函数的乘积为1来解第(3)题.
解答:解:(1)原式=(
1
2
2+(
2
2
2+
2
×
3
2
×1,
=
1
4
+
1
2
+
6
2

=
3
4
+
6
2

(2)原式=
(
3
2
)
2
+(
1
2
)
2
3
×
3
+
3

=
1
3
+
3


(3)原式=tan2°•tan4°•tan6°•cot6°•cot4°•cot2°,
=(tan2°•cot2°)(tan4°•cot4°)•(tan6°•cot6°),
=1
点评:本题考查特殊角的三角函数值及互余两角的三角函数值,准确掌握特殊角的函数值是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

计算下列各题:
(1)
2
(2cos45°-sin60°)+
24
4

(2)(-2)0-3tan30°+|
3
-2|.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算下列各题
(1)-
38
×
2
1
4

(2)(
30
-3.14)0+|
3
-2|-|
16
-
3
|

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料:
(A)1=
1
2
(1×2-0×1);  2=
1
2
(2×3-1×2);  3=
1
2
(3×4-2×3)上述三个式子相加得    1+2+3=
1
2
×3×4=6
(B) 1×2=
1
3
(1×2×3-0×1×2);2×3=
1
3
(2×3×4-1×2×3);3×4=
1
3
(3×4×5-2×3×4),∴1×2+2×3+3×4=
1
3
×3×4×5=20.
仿照上述解法计算下列各题(第(1)(2)小题要有必要的运算步骤,第(3)小题可直接写出答案):
(1)1×2+2×3+3×4+…+10×11;
(2)1×2×3+2×3×4+3×4×5+…+7×8×9;
(3)1×2×3+2×3×4+3×4×5+…+n(n+1)(n+2).

查看答案和解析>>

科目:初中数学 来源: 题型:

你想提高计算的准确率吗?不妨试试“一步一回头”.抄题与计算时每写一个数都要回头看一下是否有误.开始时可能感觉很慢,一旦形成习惯就会快起来的!计算下列各题:
(1)-1
2
3
×(0.5-
2
3
9
10

(2)-22×7-(-3)×6+5
(3)(-0.25)÷(-
2
3
)×(-
5
8
)

(4)|-6
3
8
+2
1
2
|+(-8
7
8
)+|-3-
1
2
|

查看答案和解析>>

科目:初中数学 来源: 题型:

计算下列各题.
(1)-a8÷(-a)5
(2)x10÷(x23
(3)(m-1)7÷(m-1)3
(4)(amn×(-a3m2n÷(amn5

查看答案和解析>>

同步练习册答案