精英家教网 > 初中数学 > 题目详情
15.如图所示,用四个直角边分别为a、b(a>b)的直角三角形拼成一个中间留有空隙(即图中阴影部分的小正方形)的大正方形,空隙的面积为10,则a-b的值为$\sqrt{10}$.

分析 根据题意得出小正方形的面积=(a-b)2=10,即可得出答案.

解答 解:根据题意得:小正方形的面积=(a-b)2=10,a>b,
∴a-b=$\sqrt{10}$(舍负值);
故答案为:$\sqrt{10}$.

点评 本题考查了勾股定理、正方形的性质;根据题意得出小正方形的面积为=(a-b)2是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

5.已知实数x,y满足(x-$\sqrt{{x}^{2}-2016}$)(y-$\sqrt{{y}^{2}-2016}$)=2016,则3x2-2y2+3x-3y-2015的值为(  )
A.-2016B.2016C.-1D.1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.已知“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,若公式 Cnm=$\frac{n!}{m!(n-m)!}$(n>m),则C125+C126=(  )
A.${C_{13}}^5$B.${C_{13}}^6$C.${C_{13}}^{11}$D.${C_{12}}^7$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.-(-5)=5,-|-3|=-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知x=$\frac{\sqrt{2}+1}{\sqrt{2}-1}$,y=$\frac{\sqrt{2}-1}{\sqrt{2}+1}$,求下列各式的值.
(1)x2-y2
(2)$\frac{y}{x}+\frac{x}{y}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知,如图所示,在△ABC中,E是AB的中点,CD平分∠ACB,AD⊥CD于点D,连接ED,求证:
(1)DE∥BC;
(2)2DE=BC-AC.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.一种型号的数码相机,原来每台售价5000元,经过两次降价后,现在每台售价为3200元,假设两次降价的百分率均为x,则x=20%.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在长方形纸片ABCD中,AB=15cm,AD=10cm.将纸片沿EF折叠,EF∥AD,设AE=x(cm),折叠后重叠部分的面积为S(cm2).
填写下列表格:
 x/cm 1 3 5 7 9 11 13
 S/cm2103050 70 60 40 20 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知:如图,在平面直角坐标系xOy中,反比例函数y=$\frac{8}{x}$的图象与正比例函数y=kx(k≠0)的图象相交于横坐标为2的点A,平移直线OA,使它经过点B(3,0).
(1)求平移后直线的表达式;
(2)求OA平移后所得直线与双曲线的交点坐标.

查看答案和解析>>

同步练习册答案