已知|a|=5,=7,且|a+b|=a+b,则a-b的值为________.
A.2或12
B.2或-12
C.-2或12
D.-2或-12
科目:初中数学 来源:活学巧练七年级数学下 题型:044
如图,已知,△ABC中,BD、CE分别是△ABC两条角平分线,相交于点O.
(1)当∠ABC=时,∠ACB=
时,∠ABC+∠ACB=
,
(∠ABC+∠ACB)=
,∠BOC=
.
(2)当∠A=时,∠ABC+∠ACB=
,
(∠ACB+∠ABC)=
,∠BOC=
.
(3)当∠A=时,
(∠ABC+∠ACB)=
,∠BOC=
.
(4)从上述计算过程中,我们能得到∠BOC与∠A的关系式为∠BOC=,若∠A=
时,应用上面公式可知∠BOC=
,若∠BOC=
,则可求出∠A=
.
查看答案和解析>>
科目:初中数学 来源:解题升级 解题快速反应一典通 九年级级数学 题型:044
已知抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线的顶点.
(1)用配方法求顶点C的坐标(用含有m的代数式表示);
(2)“若AB的长为2,求抛物线的解析式”的解法如下:
由(1)知,对称轴与x轴交于点D(________,0).
∵抛物线具有对称性,且AB=2,
∴AD=DB=|xA-xD|=.
∵A(xA,0)在抛物线y=(x-h)2+k上,
∴(xA-h)2+k=0. ①
∵h=xC=xD,
∴将|xA-xD|=代入①,得到关于m的方程0=(
)2+(________). ②
补全解题过程,并简述步骤①的解题依据,步骤②的解题方法.
(3)将(2)中条件“AB的长为2”改为“△ABC为等边三角形”,用类似的方法求出抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源:学习周报 数学 沪科九年级版 2009-2010学年 第5期 总第161期 沪科版 题型:013
已知线段
a=20 mm,b=6 cm,c=4 cm,d=3 cm,那么下列各式成立的是=
=
=
=
查看答案和解析>>
科目:初中数学 来源:2012-2013学年广西柳州市毕业升学模拟考试数学试卷(解析版) 题型:解答题
已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求此抛物线的解析式;
(2)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(3)在(2)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源:2011-2012学年四川乐山市区中考模拟数学试卷(解析版) 题型:解答题
在课外小组活动时,小伟拿来一道题(原问题)和小熊、小强交流.
原问题:如图1,已知△ABC, ∠ACB=90° , ∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE, 且DA=DB, EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F. 探究线段DF与EF的数量关系.小伟同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解.小熊同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小强同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.请你参考小慧同学的思路,探究并解决这三位同学提出的问题:
1.写出原问题中DF与EF的数量关系
2.如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;
3.如图3,若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,你在(1)中
得到的结论是否发生变化?请写出你的猜想并加以证明
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com