精英家教网 > 初中数学 > 题目详情

已知|a|=5,=7,且|a+b|=a+b,则a-b的值为________.

[  ]

A.2或12

B.2或-12

C.-2或12

D.-2或-12

练习册系列答案
相关习题

科目:初中数学 来源:活学巧练七年级数学下 题型:044

如图,已知,△ABC中,BD、CE分别是△ABC两条角平分线,相交于点O.

(1)当∠ABC=时,∠ACB=时,∠ABC+∠ACB=(∠ABC+∠ACB)=,∠BOC=

(2)当∠A=时,∠ABC+∠ACB=(∠ACB+∠ABC)=,∠BOC=

(3)当∠A=时,(∠ABC+∠ACB)=,∠BOC=

(4)从上述计算过程中,我们能得到∠BOC与∠A的关系式为∠BOC=,若∠A=时,应用上面公式可知∠BOC=,若∠BOC=,则可求出∠A=

查看答案和解析>>

科目:初中数学 来源:解题升级  解题快速反应一典通  九年级级数学 题型:044

已知抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线的顶点.

(1)用配方法求顶点C的坐标(用含有m的代数式表示);

(2)“若AB的长为2,求抛物线的解析式”的解法如下:

由(1)知,对称轴与x轴交于点D(________,0).

∵抛物线具有对称性,且AB=2

∴AD=DB=|xA-xD|=

∵A(xA,0)在抛物线y=(x-h)2+k上,

∴(xA-h)2+k=0.    ①

∵h=xC=xD

∴将|xA-xD|=代入①,得到关于m的方程0=()2+(________).  ②

补全解题过程,并简述步骤①的解题依据,步骤②的解题方法.

(3)将(2)中条件“AB的长为2”改为“△ABC为等边三角形”,用类似的方法求出抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:学习周报 数学 沪科九年级版 2009-2010学年 第5期 总第161期 沪科版 题型:013

已知线段a20 mmb6 cmc4 cmd3 cm,那么下列各式成立的是

[  ]
A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年广西柳州市毕业升学模拟考试数学试卷(解析版) 题型:解答题

已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.

(1)求此抛物线的解析式;

(2)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;

(3)在(2)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由。

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年四川乐山市区中考模拟数学试卷(解析版) 题型:解答题

在课外小组活动时,小伟拿来一道题(原问题)和小熊、小强交流.

原问题:如图1,已知△ABC, ∠ACB=90° , ∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE, 且DA=DB,  EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F. 探究线段DF与EF的数量关系.小伟同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解.小熊同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小强同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.请你参考小慧同学的思路,探究并解决这三位同学提出的问题:

1.写出原问题中DF与EF的数量关系

2.如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;

3.如图3,若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,你在(1)中

得到的结论是否发生变化?请写出你的猜想并加以证明

 

查看答案和解析>>

同步练习册答案