精英家教网 > 初中数学 > 题目详情
17.如图,直线y=-x+3与x轴,y轴分别相交于点B,C经过B,C两点的抛物线y=ax2+bx+c与x轴的另一交点为A,顶点为P,且对称轴是直线x=2.
(1)求A点的坐标.
(2)求该抛物线的函数表达式.
(3)连接AC.请问:在x轴上是否存在点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

分析 (1)求值直线y=-x+3与x轴的交点B,然后根据AB的长,即可求得OA的长,则A的坐标即可求得;
(2)利用待定系数法求得二次函数的解析式;
(3)分成$\frac{BQ}{BC}$=$\frac{PB}{AB}$,∠PBQ=∠ABC=45°和$\frac{QB}{AB}$=$\frac{PB}{BC}$,∠QBP=∠ABC=45°两种情况求得QB的长,据此即可求解.

解答 解:(1)当y=0时,-x+3=0,解得x=3,即B(3,0),
又∵点A与点B关于x=2对称,
∴A的坐标为(1,0);

(2)根据题意得:$\left\{\begin{array}{l}{a+b+c=0}\\{9a+3b+c=0}\\{c=3}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=1}\\{b=-4}\\{c=3}\end{array}\right.$,
∴抛物线的解析式是:y=x2-4x+3;

(3)①当$\frac{BQ}{BC}$=$\frac{PB}{AB}$,∠PBQ=∠ABC=45°时,△PBQ∽△ABC,即$\frac{BQ}{3}$=$\frac{\sqrt{2}}{2}$,
∴BQ=3,
又∵BO=3,
∴点Q与点O重合,
∴Q1的坐标是(0,0).
②当$\frac{QB}{AB}$=$\frac{PB}{BC}$,∠QBP=∠ABC=45°时,△QBP∽△ABC,即$\frac{QB}{2}$=$\frac{\sqrt{2}}{3\sqrt{2}}$,
QB=$\frac{2}{3}$.
∵OB=3,
∴OQ=OB-QB=3-$\frac{2}{3}$=$\frac{7}{3}$
∴Q2的坐标是($\frac{7}{3}$,0).
∵∠PBx=180°-45°=135°,∠BAC<135°,
∴∠PBx≠∠BAC.
∴点Q不可能在B点右侧的x轴上
综上所述,在x轴上存在两点Q1(0,0),Q2($\frac{7}{3}$,0).

点评 本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数的解析式,相似三角形的判定与性质,正确进行分类求得QB的长是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

7.在平面直角坐标系中,反比例函数y=$-\frac{3}{x}$图象的两支分别在二、四象限.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知一个角的补角是这个角的3倍,求这个角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.计算:|-2|-$\sqrt{2}$sin45°+(π-3)0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在△ABC中,∠ABC=2∠C,∠BAC的平分线AD交BC于D,E为AC上一点,AE=AB,连接DE.
(1)求证:△ABD≌△AED;
(2)已知BD=5,AB=9,求AC长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.二次函数y=mx2-2x+1,当x$<\frac{1}{3}$时,y的值随x值的增大而减小,则m的取值范围是0<m≤3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.若一次函数y=2x+b的图象不经过第二象限,则此函数的解析式可以为y=2x-1(写出一个即可)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.现要把192吨物资从我市运往甲、乙两地,用大、小两种货车共18辆恰好能一次性运完这批物资.已知这两种货车的载重量分别为14吨/辆和8吨/辆,运往甲、乙两地的运费如表:
运往地
车型
甲地(元/辆)乙地(元/辆)
大货车720800
小货车500650
(1)求这两种货车各用多少辆?
(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式;
(3)在(2)的条件下,若运往甲地的物资不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最少总运费.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在?ABCD中,M,N在对角线AC上,且AM=CN,求证:BM∥DN.

查看答案和解析>>

同步练习册答案