分析 (1)求值直线y=-x+3与x轴的交点B,然后根据AB的长,即可求得OA的长,则A的坐标即可求得;
(2)利用待定系数法求得二次函数的解析式;
(3)分成$\frac{BQ}{BC}$=$\frac{PB}{AB}$,∠PBQ=∠ABC=45°和$\frac{QB}{AB}$=$\frac{PB}{BC}$,∠QBP=∠ABC=45°两种情况求得QB的长,据此即可求解.
解答 解:(1)当y=0时,-x+3=0,解得x=3,即B(3,0),
又∵点A与点B关于x=2对称,
∴A的坐标为(1,0);
(2)根据题意得:$\left\{\begin{array}{l}{a+b+c=0}\\{9a+3b+c=0}\\{c=3}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=1}\\{b=-4}\\{c=3}\end{array}\right.$,
∴抛物线的解析式是:y=x2-4x+3;
(3)①当$\frac{BQ}{BC}$=$\frac{PB}{AB}$,∠PBQ=∠ABC=45°时,△PBQ∽△ABC,即$\frac{BQ}{3}$=$\frac{\sqrt{2}}{2}$,
∴BQ=3,
又∵BO=3,
∴点Q与点O重合,
∴Q1的坐标是(0,0).
②当$\frac{QB}{AB}$=$\frac{PB}{BC}$,∠QBP=∠ABC=45°时,△QBP∽△ABC,即$\frac{QB}{2}$=$\frac{\sqrt{2}}{3\sqrt{2}}$,
QB=$\frac{2}{3}$.
∵OB=3,
∴OQ=OB-QB=3-$\frac{2}{3}$=$\frac{7}{3}$
∴Q2的坐标是($\frac{7}{3}$,0).
∵∠PBx=180°-45°=135°,∠BAC<135°,
∴∠PBx≠∠BAC.
∴点Q不可能在B点右侧的x轴上
综上所述,在x轴上存在两点Q1(0,0),Q2($\frac{7}{3}$,0).
点评 本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数的解析式,相似三角形的判定与性质,正确进行分类求得QB的长是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
运往地 车型 | 甲地(元/辆) | 乙地(元/辆) |
大货车 | 720 | 800 |
小货车 | 500 | 650 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com