18£®ÔÚÕý·½ÐÎABCDÍâ²à×÷Ö±ÏßAP£¬µãB¹ØÓÚÖ±ÏßAPµÄ¶Ô³ÆµãΪE£¬Á¬½ÓBE£¬DE£¬ÆäÖÐDE½»Ö±ÏßAPÓÚµãF£®
£¨1£©Èô¡ÏPAB=20¡ã£¬Çó¡ÏADFµÄ¶ÈÊý£»
£¨2£©ÔÚͼ1ÖУ¬µ±¡ÏPAB£¼45¡ãʱ£¬¡ÏBEFÊÇ·ñΪ¶¨Öµ£¿Èç¹ûÊÇÇóÆä¶ÈÊý£»Èç¹û²»ÊÇ£¬ËµÃ÷ÀíÓÉ£®
£¨3£©ÔÚͼ2ÖУ¬Èô45¡ã£¼¡ÏPAB£¼90¡ã£¬ÇëÖ±½ÓÔÚͼÖв¹È«Í¼ÐΣ¬¡ÏBEFµÄ¶ÈÊýÊÇ·ñ»á·¢Éú±ä»¯£¿Èô»á·¢Éú±ä»¯£¬ËµÃ÷ÈçºÎ±ä»¯£»Èô²»»á£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÔÚµÈÑüÈý½ÇÐÎABEÖÐÇóµÃ¡ÏEABµÄ¶ÈÊý£¬ÔÚµÈÑüÈý½ÇÐÎEADÖÐÇóµÃ¡ÏEADµÄ¶ÈÊý£¬¼´¿ÉµÃµ½¡ÏADFµÄ¶ÈÊý£»
£¨2£©ÏÈÉè¡ÏPAB=¦Á£¬¸ù¾ÝµÈÑüÈý½ÇÐεÄÐÔÖÊ£¬ÇóµÃ¡ÏAEBºÍ¡ÏAEDµÄ¶ÈÊý£¬¸ù¾Ý¡ÏBEF=¡ÏAEB-¡ÏAED¼´¿ÉµÃµ½¡ÏBEFΪ¶¨Öµ£»
£¨3£©ÏÈÉè¡ÏPAB=¦Â£¬¸ù¾ÝµÈÑüÈý½ÇÐεÄÐÔÖÊ£¬ÇóµÃ¡ÏAEBºÍ¡ÏAEDµÄ¶ÈÊý£¬¸ù¾Ý¡ÏBEF=¡ÏAED+¡ÏAEB¼´¿ÉµÃµ½¡ÏBEFΪ¶¨Öµ£®

½â´ð ½â£º£¨1£©¡ßµãB¹ØÓÚÖ±ÏßAPµÄ¶Ô³ÆµãΪE£¬¡ÏPAB=20¡ã£¬
¡àAE=AB£¬¡ÏEAB=40¡ã£¬
ÔÚÕý·½ÐÎABCDÖУ¬AB=AD£¬¡ÏBAD=90¡ã£¬
¡àAE=AD£¬¡ÏEAD=130¡ã£¬
¡àµÈÑüÈý½ÇÐÎAEDÖУ¬¡ÏADF=25¡ã£»

£¨2£©Èçͼ1£¬Éè¡ÏPAB=¦Á£¬Ôò¡ÏEAB=2¦Á£¬
¡à¡ÏAEB=90¡ã-¦Á£¬¡ÏAED=$\frac{180¡ã-£¨90¡ã+2¦Á£©}{2}$=45¡ã-¦Á£¬
¡à¡ÏBEF=¡ÏAEB-¡ÏAED=90¡ã-¦Á-£¨45¡ã-¦Á£©=45¡ã£»

£¨3£©ÈçͼËùʾ£¬¡ÏBEFµÄ¶ÈÊý²»»á·¢Éú±ä»¯£¬ÈÔΪ45¡ã
Éè¡ÏPAB=¦Â£¬
ͬÀí¿ÉµÃ£¬¡ÏEAB=2¦Â£¬¡ÏAEB=90¡ã-¦Â£¬
¡à¡ÏEAD=360¡ã-90¡ã-2¦Â=270¡ã-2¦Â£¬
¡àµÈÑüÈý½ÇÐÎADEÖУ¬¡ÏAED=$\frac{180¡ã-£¨270¡ã-2¦Â£©}{2}$=¦Â-45¡ã£¬
¡à¡ÏBEF=¡ÏAED+¡ÏAEB=¦Â-45¡ã+90¡ã-¦Â=45¡ã£¨¶¨Öµ£©£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÕý·½ÐεÄÐÔÖÊÒÔ¼°µÈÑüÈý½ÇÐεÄÐÔÖÊ£¬½â¾öÎÊÌâµÄ¹Ø¼üÊǸù¾ÝµÈÑüÈý½ÇÐεÄÐÔÖÊÇóµÃÆäµ×½Ç»ò¶¥½ÇµÄ¶ÈÊý£¬ÔÙ¸ù¾Ý½ÇµÄºÍ²î¹ØϵµÃ³ö½áÂÛ£®½âÌâʱעÒ⣬Èç¹ûÁ½¸öͼÐιØÓÚijֱÏ߶Գƣ¬ÄÇô¶Ô³ÆÖáÊÇÈκÎÒ»¶Ô¶ÔÓ¦µãËùÁ¬Ï߶εĴ¹Ö±Æ½·ÖÏߣ®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èçͼ£¬Æ½ÐÐËıßÐÎABCDµÄ¶Ô½ÇÏßÏཻÓÚµãO£¬ÇÒAD¡ÙCD£¬¹ýµãO×÷OE¡ÍBD£¬½»ADÓÚµãE£¬Èç¹û¡÷ABEµÄÖܳ¤Îª4£¬ÄÇôƽÐÐËıßÐÎABCDµÄÖܳ¤ÊÇ8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Ñ¡È¡Ò»×éa¡¢bÖµ£¬Ê¹·½³Ì×é$\left\{\begin{array}{l}{5x+y=7}\\{ax+2y=c}\end{array}\right.$
¢ÙÓÐÎÞÊý½â£»¢ÚÎ޽⣻¢ÛÓÐΨһ½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵ£¬Õý·½ÐÎOABCµÄ¶¥µãOÔÚ×ø±êÔ­µã£¬¶¥µãC¡¢A·Ö±ðÔÚxÖá¡¢yÖáµÄÕý°ëÖáÉÏ£¬±ß³¤Îª4£¬µãNÊDZßBCµÄÖе㣬µãDÊÇOCµÄÖе㣮
£¨1£©Õý·½ÐÎOABCµÄ¶Ô½ÇÏßOBµÄ³¤Îª4$\sqrt{2}$£¬DNµÄ³¤Îª2$\sqrt{2}$£»
£¨2£©Ö±ÏßOBµÄ½âÎöʽΪy=x£»
£¨3£©ÇóÖ±ÏßADÓëÖ±ÏßOBµÄ½»µã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Ò»´Îº¯Êýy=kx+b£¨k¡Ù0£©µÄͼÏóÓë·´±ÈÀýº¯Êýy=$\frac{m}{n}$£¨m¡Ù0£©µÄͼÏó½»ÓÚA£¬BÁ½µã£¬ÓëxÖá½»ÓÚµãC£¬ÓëyÖá½»ÓÚµãD£¨0£¬4£©£¬µãAµÄ×ø±êΪ£¨n£¬6£©£¬ÇÒtan¡ÏACO=2£®
£¨1£©ÇóµãCµÄ×ø±êºÍÒ»´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÇóµãAµÄ×ø±êºÍ·´±ÈÀýº¯ÊýµÄ½âÎöʽ£»
£¨3£©ÔÚxÖáÉÏÇóµãE£¬Ê¹¡÷ACEΪµÈÑüÈý½ÇÐΣ®£¨Ö±½Óд³öµãEµÄ×ø±ê£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Éè¹ØÓÚxµÄ²»µÈʽ×é$\left\{\begin{array}{l}{x-m£¾1}\\{5x-2m£¼-1}\end{array}\right.$Î޽⣬ÇómµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÔÚ·½³Ì×é$\left\{\begin{array}{l}{2x+y=1-m}\\{x+2y=2}\end{array}\right.$ÖУ¬Èôx£¬yÂú×ãx+y£¾-1£¬ÔòmµÄÈ¡Öµ·¶Î§ÔÚÊýÖáÉϱíʾӦÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÇóÏÂÁз½³Ì×éµÄ×ÔÈ»Êý½â£º$\left\{\begin{array}{l}{x+y+z=100}\\{21x+8y+3z=600}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®·½³Ì×é$\left\{\begin{array}{l}{3x-y=3}\\{2x+3y=13}\end{array}\right.$µÄ½âÊÇx=2£¬y=3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸