精英家教网 > 初中数学 > 题目详情

如图∠1=∠2,∠3=∠4,∠5=∠6,∠1=60°,∠7=20°
(1)试说明AC⊥BD;
(2)求∠3及∠5的度数;
(3)求四边形ABCD各内角的度数.

解:(1)∵∠1+∠2+∠DAB=180°,
即∠1+∠2+∠3+∠4=180°,
又∵∠1=∠2,∠3=∠4,
∴∠1+∠3=90°,
∵∠1+∠3+∠AOD=90°,
∴∠AOD=90°,
∴AC⊥BD;

(2)∵∠1+∠3=90°,
∴∠3=90°-∠1=90°-60°=30°.
∵AC⊥BD,
∴∠COD=90°,
∴∠5+∠7=90°,
∴∠5=90°-∠7=70°;

(3)∠DAB=2∠3=60°,
∠ADC=∠1+∠7=60°+20°=80°,
∠DCB=∠5+∠6=70°+70°=140°,
则∠ABC=360°-∠DAB-∠ADC-∠DCB=80°.
分析:(1)根据三角形内角和定理即可证得∠1+∠3=90°,则在△AOD中,利用内角和定理即可求得∠AOD=90°,即可证得;
(2)根据直角三角形的两个锐角互余即可求解;
(3)根据根据(2)即可求得∠DAB,∠ADC,∠DCB的度数,然后根据四边形的内角和定理即可求得∠ABC的度数.
点评:本题考查了三角形的内角和定理,以及四边形的内角和定理,直角三角形的两锐角互余,正确理解三角形的内角和定理是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,已知⊙P的半径OD=5,OD⊥AB,垂足是G,OG=3,则弦AB=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知A,B两点是反比例函数y=
4x
(x>0)的图象上任意两点,过A,B两点分别作y轴的垂线,垂足分别为C,D,连接AB,AO,BO,梯形ABDC的面积为5,则△AOB的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=24,BC=26.先顺次连接矩形各边中点得菱形,又顺次连接菱形各边中点得矩形,再顺次连接矩形各边中点得菱形,照此继续,…,第10次连接的图形的面积是
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

6、如图是某几何体的三视图,则这个几何体是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图AB是⊙O的直径,⊙O过BC的中点D,且DE⊥AC于点E.
(1)求证:DE是⊙O的切线;
(2)若∠C=30°,CD=
3
,求⊙O的半径.

查看答案和解析>>

同步练习册答案