精英家教网 > 初中数学 > 题目详情

如图,△ABC中,内切圆I与AB,BC,CA分别切于F,D,E,连接BI,CI,再连接FD,ED,
(1)若∠A=40°,求∠BIC与∠FDE的度数.
(2)若∠BIC=α;∠FDE=β,试猜想α,β的关系,并证明你的论.

解:(1)∵圆I是△ABC的内切圆,
∴∠IBC=∠ABC,∠ICB=∠ACB,
∴∠IBC+∠ICB=(∠ABC+∠ACB),
∵∠ABC+∠ACB=180°-∠A=140°,
∴∠IBC+∠ICB=70°,
∴∠BIC=180°-(∠IBC+∠ICB)=110°,
连接IF、IE,

∵圆I是△ABC的内切圆,
∴∠IFA=∠IEA=90°,
∵∠A=40°,
∴∠FIE=360°-∠IFA-∠IEA-∠A=140°,
∴∠EDF=∠EIF=70°,
答:∠BIC=110°,∠FDE=70°.

(2)解:α=180°-β.
理由如下:由圆周角定理得:∠FIE=2∠FDE,
由(1)知:2∠FDE=180°-∠A,
即∠A=180°-2∠FDE,
∴∠A=180°-∠EIF,
由(1)知:2∠FDE=180°-∠A,
∴∠A=180°-2∠FDE=180°-2β,
∠BIC=180°-(∠IBC+∠ICB)=180°-(∠ABC+∠ACB),
=180°-(180°-∠A)=90°+∠A,
∴∠BIC=α=90°+(180°-2β),
即α=180°-β.
分析:(1)根据圆I是△ABC的内切圆求出∠IBC+∠ICB=(∠ABC+∠ACB),求出∠ABC+∠ACB的度数,求出∠IBC+∠ICB即可;连接IF、IE,求出∠FIE,即可求出∠FDE;
(2)由(1)得出∠BIC=180°-(∠IBC+∠ICB),∠FDE=180°-2∠A,根据三角形的内角和定理求出∠BIC=90°+∠A,代入即可求出答案.
点评:本题主要考查对三角形的内角和定理,三角形的内切圆与内心,圆周角定理等知识点的理解和掌握,能熟练地运用性质进行推理是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC中,AD是∠BAC内的一条射线,BE⊥AD,且△CHM可由△BEM旋转而得,延长CH交AD于F,则下列结论错误的是(  )
A、BM=CM
B、FM=
1
2
EH
C、CF⊥AD
D、FM⊥BC

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,△ABC中,AB=AC,∠BAC=40°,D为△ABC内一点,如果将△ACD绕点A按逆时针方向旋转到△ABD′的位置,则∠ADD′的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•北辰区一模)如图,△ABC中,∠A=50°,点E、F在AB、AC上,沿EF向内折叠△AEF,得△DEF,则图中∠1+∠2等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,已知AB=AC,△DEF是△ABC的内接正三角形,α=∠BDF,β=∠CED,γ=∠AFE,则用β、γ表示α的关系式是
α=
β+γ
2
α=
β+γ
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,∠BAC=60°,AB=2AC.点P在△ABC内,且PA=
3
,PB=5,PC=2,求△ABC的面积.

查看答案和解析>>

同步练习册答案