【题目】如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.
(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.
【答案】(1)证明见解析;(2)BH=.
【解析】
(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;
(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.
(1)连接OC,
∵AB是⊙O的直径,点C是的中点,
∴∠AOC=90°,
∵OA=OB,CD=AC,
∴OC是△ABD是中位线,
∴OC∥BD,
∴∠ABD=∠AOC=90°,
∴AB⊥BD,
∵点B在⊙O上,
∴BD是⊙O的切线;
(2)由(1)知,OC∥BD,
∴△OCE∽△BFE,
∴,
∵OB=2,
∴OC=OB=2,AB=4,,
∴,
∴BF=3,
在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,
∵S△ABF=ABBF=AFBH,
∴ABBF=AFBH,
∴4×3=5BH,
∴BH=.
科目:初中数学 来源: 题型:
【题目】在四边形ABCD中,AD∥BC,AD=2BC,点E为AD的中点,连接BE、BD,∠ABD=90°.
(1)如图l,求证:四边形BCDE为菱形;
(2)如图2,连接AC交BD于点F,连接EF,若AC平分∠BAD,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ABC面积的.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.
(1)求直线AB和反比例函数的解析式;
(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;
(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,四边形内接于⊙,是⊙的直径,过点的切线与的延长线相交于点.且,连接.
(1)求证:;
(2)过点作,垂足为,当时,求⊙的半径;
(3)在(2)的条件下,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为4,2,反比例函数y(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为( )
A. 2B. 3C. 4D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个圆形转盘,分黑色、白色两个区域.
(1)某人转动转盘,对指针落在黑色区域或白色区域进行了大量试验,得到数据如下表:
实验次数(次) | 10 | 100 | 2000 | 5000 | 10000 | 50000 | 100000 |
白色区域次数(次) | 3 | 34 | 680 | 1600 | 3405 | 16500 | 33000 |
落在白色区域频率 | 0.3 | 0.34 | 0.34 | 0.32 | 0.34 | 0.33 | 0.33 |
请你利用上述实验,估计转动该转盘指针落在白色区域的概率为___________.(精确到0.01);
(2)若该圆形转盘白色扇形的圆心角为120度,黑色扇形的圆心角为,转动转盘两次,求指针一次落在白色区域,另一次落在黑色区域的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AB=10,AC=16,点M是对角线AC上的一个动点,过点M作PQ⊥AC交AB于点P,交AD于点Q,将△APQ沿PQ折叠,点A落在点E处,当△BCE是等腰三角形时,AP的长为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com