精英家教网 > 初中数学 > 题目详情
4.解方程:
(1)2x2+x=6;
(2)(x+1)2=4.

分析 (1)先把方程化为一般式,然后利用因式分解法解方程;
(2)利用直接开平方法解方程.

解答 解:(1)2x2+x-6=0,
(2x-3)(x+2)=0,
2x-3=0或x+2=0,
所以x1=$\frac{3}{2}$,x2=-2;
(2)x+1=±2,
所以x1=1,x2=-3.

点评 本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了直接开平方法解一元二次方程.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.在直角坐标系中,以原点为圆心,4为半径作圆,该圆上到直线y=x+$\sqrt{2}$的距离等于3的点的坐标为(-2$\sqrt{2}$,2$\sqrt{2}$)、($\sqrt{2}$+$\sqrt{6}$,$\sqrt{6}$-$\sqrt{2}$)、($\sqrt{2}$-$\sqrt{6}$,-$\sqrt{6}$-$\sqrt{2}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.先化简:($\frac{1}{{x}^{2}-2x}$-$\frac{1}{{x}^{2}-4x+4}$)÷$\frac{2}{{x}^{2}-2x}$,再从0、1、2这三个数中选一个适当的数作为x的值代入,求出式子的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.用一元一次方程解决问题:
小芳的爸爸买了一箱苹果回家,小芳想分给家里的每一个人,如果每人分3个,就剩下3个苹果分不完,如果每人分4个,则还差2个苹果才够分,问小芳家有几个人?爸爸买了多少个苹果?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.按要求完成下列各小题:
(1)计算:100°+9°20′-89°40′30″
(2)当(x-3)2+|y+2|=0时,求代数式$\frac{{x}^{2}+{y}^{2}}{{x}^{2}-{y}^{2}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知两个正比例函数y1=k1x与y2=k2x,当x=2时,y1+y2=-1;当x=3时,y1-y2=12.
(1)求这两个正比例函数的解析式;
(2)当x=4时,求$\frac{1}{y_1}+\frac{1}{y_2}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.梯形ABCD中,AD∥BC,∠C=90°,AD=3,CD=4,BC=5,直线MN从AD出发,始终保持与AD平行,并以每秒1个单位的速度向BC移动,交AB于M,交CD于N,同时点P从点C出发,沿CB方向以每秒2个单位速度向点B移动,当P移动到B时,停止运动,同时直线MN也停止运动,设移动时间为t秒,△PMN的面积为S.
(1)线段AB的长度是2$\sqrt{5}$;当t=$\frac{4}{5}$时,PN∥AB.
(2)求面积S与时间t的函数关系式.
(3)是否存在某一时刻t使得△PMN的面积是梯形ABCD面积的四分之一?若存在,求出此时t的值;若不存在,请说明理由.
(4)是否存在某一时刻t使得∠MPN是直角?若存在,求出此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知,AE=BF,AC∥DB,AC=DB,证明:CF=DE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,D、E分别是AC、AB上的点,∠ADE=40°,∠C=40°,∠A=60°.
(1)DE与BC平行吗?请说明理由;
(2)求∠B的度数.

查看答案和解析>>

同步练习册答案