分析 (1)根据题意求出两个相似三角形的相似比,得到两个相似三角形的周长比,列方程解答即可;
(2)根据相似三角形面积的比等于相似比的平方求出面积比,列方程解答.
解答 解:(1)∵两个相似三角形的一组对应边长分别是4厘米和8厘米,
∴两个相似三角形的相似比为1:2,
∴两个相似三角形的周长比为1:2,
设较小的三角形的周长为xcm,则较大的三角形的周长为2xcm,
由题意得,x+2x=60,
解得,x=20,
则2x=40,
故答案为:20cm和40cm;
(2)∵两个相似三角形的相似比为1:2,
∴两个相似三角形的面积比为1:4,
设较小的三角形的周长为acm2,则较大的三角形的周长为4acm2,
由题意得,x+4x=60,
解得,x=12,
则4x=48,
故答案为:12cm2和48cm2.
点评 本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (1,2) | B. | (1,-2) | C. | (-1,2) | D. | (-1,-2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com