精英家教网 > 初中数学 > 题目详情
精英家教网如图,在Rt△ABC中,∠ACB=90°,以BC为直径作圆,交斜边AB于点E,D为AC的中点.连接DO,DE.则下列结论中不一定正确的是(  )
A、DO∥ABB、△ADE是等腰三角形C、DE⊥ACD、DE是⊙O的切线
分析:连接OE,由OD为三角形ABC的中位线,利用中位线定理得到OD与AB平行,选项A正确;由两直线平行得到两对同位角相等,两对内错角相等,再由OE=OB,利用等边对等角得到一对角相等,等量代换得到一对角相等,再由OC=OE,OD为公共边得到三角形COD与三角形EOD全等,由全等三角形的对应角相等得到∠OED为直角,即OE垂直于DE,可得出DE为圆O的切线,选项D正确;由全等三角形对应角相等得到∠CDO=∠EDO,等量代换得到∠A=∠DEA,即三角形AED为等腰三角形,选项B正确,而DE不一定垂直于AC,故选项C符合题意.
解答:精英家教网解:连接OE,
∵D为AC中点,O为BC中点,
∴OD为△ABC的中位线,
∴DO∥AB,选项A正确;
∴∠COD=∠B,∠DOE=∠OEB,∠CDO=∠A,∠EDO=∠DEA,
∵OE=OB,
∴∠OEB=∠B,
∴∠COD=∠DOE,
在△COD和△EOD中,
OC=OE
∠COD=∠EOD
OD=OD

∴△COD≌△EOD(SAS),
∴∠OED=∠OCD=90°,∠CDO=∠EDO,
∴DE为圆O的切线,选项D正确;∠A=∠DEA,
∴△AED为等腰三角形,选项B正确,
则不一定正确的为DE⊥AC.
故选C
点评:此题考查了切线的判定,以及全等三角形的判定与性质,熟练掌握切线的判定方法是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案